
Champollion meets
Apollyon:

What Makes Empirical
Software Engineering

so Hard?

Richard A. O’Keefe,
18 March 2016

Tuesday, 15 March 16

Champollion

• Jean-François Champollion

• Ancient Egyptian had three

scripts: hieroglyphic, hieratic,

and demotic. Coptic used a

variant of Greek; readable.

• Champollion figured out how

to read hieroglyphic.

Tuesday, 15 March 16

The Rosetta Stone

• A decree of the priests

of Memphis

• Written in Greek, in

Egyptian demotic, and

in hieroglyphs.

Tuesday, 15 March 16

Simplistic Significance

• Having the same text written three ways

• meant that knowledge of one language and
script (Greek)

• and a closely related language (Coptic)

• could be used to bootstrap Ancient
Egyptian and its scripts

Tuesday, 15 March 16

RosettaCode

• Rosetta Code is a programming chrestomathy
site. The idea is to present solutions to the same
task in as many different languages as possible, to
demonstrate how languages are similar and
different, and to aid a person with a grounding in
one approach to a problem in learning another.
Rosetta Code currently has 782 tasks, 193 draft
tasks, and is aware of 609 languages, though we
do not (and cannot) have solutions to every task in
every language.

Tuesday, 15 March 16

http://en.wikipedia.org/wiki/Chrestomathy
http://en.wikipedia.org/wiki/Chrestomathy
http://www.rosettacode.org/wiki/Category:Solutions_by_Programming_Task
http://www.rosettacode.org/wiki/Category:Solutions_by_Programming_Task
http://www.rosettacode.org/wiki/Category:Draft_Programming_Tasks
http://www.rosettacode.org/wiki/Category:Draft_Programming_Tasks
http://www.rosettacode.org/wiki/Category:Draft_Programming_Tasks
http://www.rosettacode.org/wiki/Category:Draft_Programming_Tasks
http://www.rosettacode.org/wiki/Category:Programming_Languages
http://www.rosettacode.org/wiki/Category:Programming_Languages

Empirical Software
Engineering

• Programming languages are different.

• People have opinions about which is better.

• (Not that there’s only one kind of “better”)

• Wouldn’t it be nice to base our opinions on
empirical measurements?

Tuesday, 15 March 16

Lutz Prechelt

• “An empirical comparison of seven
programming languages”, IEEE Computer,
Volume 33, issue 10, October 2000.

• (C, C++, Java) vs (Perl, Python, Tcl, Rexx)

• Scripting languages “often turn out better
than Java and not much worse than C(++)”

Tuesday, 15 March 16

Apollyon

• “The Destroyer”, the king

of the army of locusts in

Revelation 9:11.

• The foe of Pilgrim in the

Valley of Humiliation in

Bunyan’s Pilgrim’s Progress

Tuesday, 15 March 16

What is the destroyer?

• Prechelt: In general, the differences
between languages tend to be smaller than
the typical differences due to different
programmers within the same language.

• Time: bad/good from 1.5 for Tcl to 27 for
C++, Memory: 1.2 for Python to 4.9 for
C++, Length: 1.3 for C to 3.7 for Rexx

Tuesday, 15 March 16

Prechelt: limitations

• Prechelt had one problem.

• Prechelt had only 80 programs.

Tuesday, 15 March 16

Nanz and Furia

• Experiments take much time and money

• Wouldn’t it be nice if someone else had

already done the hard work?

• Oh look, someone has!

• Let’s analyse RosettaCode.

Tuesday, 15 March 16

Where do I come in?

• I’ve been working on a Smalltalk compiler
and library for several years.

• Last year I implemented 80% of the
RosettaCode problems in Smalltalk.

• Nanz and Furia’s analysis of RosettaCode
looked great, but

Tuesday, 15 March 16

Remember Apollyon?

• Nanz and Furia wanted to compare

• Program length

• Run time

• Memory

• Reliability

• for C,Go,C#,Java,F#,Haskell,Python,Ruby

Tuesday, 15 March 16

Prechelt met the
Destroyer

• Variability between programmers exceeds
variability between languages (one
problem).

• Nanz & Furia cite Prechelt, but omit
discussion of this point.

• Is it true of Rosetta Code?

Tuesday, 15 March 16

Language Effect
(how much shorter than C)

• 1.00 ×/÷ 1.12 C

• 1.07 ×/÷ 1.12 Go

• 1.23 ×/÷ 1.12 Java

• 1.37 ×/÷ 1.12 C# (remember this)

• 1.49 ×/÷ 3.15 AWK

• 1.50 ×/÷ 1.12 JavaScript

• 1.52 ×/÷ 1.11 Ruby

• 1.54 ×/÷ 1.11 Python

• 1.98 ×/÷ 1.11 Haskell

Tuesday, 15 March 16

Task Effect
(how much shorter than median task)

• Min 0.26 (4 times as long)

• 1st quartile 0.67 (1.5 times as long)

• Median 1.00 (by definition)

• 3rd quartile 1.49 (2/3 as long)

• Maximum 10.79 (9% as long)

Tuesday, 15 March 16

Model

• Fit log(SLOC) = f(Language) + g(Task)

• Report as SLOC = f’(Language) × g’(Task)

• Take cum grano salis

Tuesday, 15 March 16

Programmer Effect
Longest/Shortest ratio

Language Q1 Median Q3 Max N
C++ 1.24 1.67 2.33 15.55 87
C 1.32 1.75 2.47 7.67 144
C# 1.24 1.46 2.11 10.38 55
Java 1.27 1.56 2.33 6.52 90
JS 1.15 1.63 2.24 6.00 47
Haskell 1.22 1.54 2.19 14.75 82
Ruby 1.27 1.60 2.07 4.79 85
AWK 1.28 1.38 1.73 1.88 12
Python 1.20 1.57 3.32 30.16 151
Go 1.20 1.62 1.62 5.35 116
SML 1.15 1.22 1.22 1.38 3

Tuesday, 15 March 16

How obtained

• Consider (language, task) pairs having
multiple solutions

• Determine length of each solution

• Record longest/shortest

• Summarise by language

Tuesday, 15 March 16

Apollyon victorious

• Programmer effects are greater than
language effects.

• For better analysis, we need to know who
wrote what.

• Rosetta Code records that but it’s hard to
get; Nanz and Furia took a snapshot but
threw that away.

Tuesday, 15 March 16

Problems with SLOC

• How do you measure the length of a
program?

• Nanz and Furia used “cloc” because it
handles dozens of languages.

• It counts every line containing a token of
the language (i.e., replace comments by
spaces then discard blank lines)

Tuesday, 15 March 16

Cloc reports 4 sizes

if (c)
 {
 x++;
 }

if (c) {
 x++;
}

if (c)
 x++; if (c) x++;

Tuesday, 15 March 16

Layout effect

Language “Tight” Original “Loose”

C 1.00 1.06 1.24

Java 1.00 1.03 1.27

C# 1.00 1.41 1.44

Tuesday, 15 March 16

Data: unclean, unclean!

• In the snapshot, test data, sample output,
transcripts &c are mislabelled as source.

• Languages where source & module name
must match (Erlang, Java, &c) don’t so can’t
be compiled without manual correction

• Code may not compile anyway (unspecified
or wrong dialect, or just plain wrong).

Tuesday, 15 March 16

Arbitrary-precision
integers example

• Compute 5**(4***(3**(2**1)))

• Since 4**(3**(2**1)) = 262,144, this
reduces to Compute 5**262144

• How is testing one library function in a
particular implementation a test of a
programming language?

Tuesday, 15 March 16

NOT the same problem

• Example: Matrix Arithmetic says to
compute determinant and permanent but
not how. Direct algorithm O(n.n!), Ryser
algorithm O(n.2n) but naively O(n2.2n)

• Example: most “currying” solutions aren’t

• Example: flatten a list, some versions
discard duplicates and some don’t.

Tuesday, 15 March 16

