——

POP-18 USER'S MANUAL
Author: D, J, M, Davies

Revised for POP-18 Version B8(261)

Aevised for POP-1@ Version 11E(313)}

Revised for POP-1@ Version 12A(335)

Revised for POP-1f Version 12D(363)
Date: 29 May 1976

Copyright C, 1976 D.J.M, Davies

Department of Computer Science,
University of Western Ontario,
London, Bnterio, Canada,

Refer to the book “"Pregramming in POP-2" for a
general introductien to and a detailed
description of the language,. This memorandum
describes the particuler features of this POP-10
implementation.

NOTICE: POP18 is an extensively modified version of POPZ2 wversion
(26) Copyright 1972 by Cenversational Scoftwares Ltd and may contain
copyright materisal, No werranty, either express or implied, is mada
regarding this program by either the liniversity of Waestsrn Ontario er
Cenversational Software Ltd. '

POP-10 USER’'S MANUAL version 120(363) 3If~-Apr=76 Page 2
INTRODUCTION

1.2 INTRODUCTION

POP-1 is the version of POP-2 in wse on this 0DECsystem-14
computer installation., The name has been changed to avoid confusian,
since this implementation varies in some respects from +the formal
definition of POP-2 given by

R.M. Burstall, J.85, Collins & R.J, FPopplestone:
"Programming in POP-2",
Edinburgh University Press, 1971.
(sometimes called the ‘Silver Book').

1.1 Copyright Warning.

Copyright in "Programming in POP-2", including the Primer and
Reference Manual for POP-=2, is held by the University of Edinburgh.
However, this implementation of POP-12 is based in part on an
implementation of POP-2 marketed by Conversaticonal Software Ltd,,
Edinburgh, and consequently the POP-10 system itself may not be
transferred to other computers without approval of C,5,.L.

This implementation of POP-=10 is NOT the responsibility of
C.5.L., and enguiries about it should not be addressed to them.
Instead, contact:

O. J. M, Davies,

Department of Computer Science,
University of Western Untario,
l.ondon 72, CANADA,

1.2 Using POP-1Q

The changes introduced in POP-1PF are designed to take advantage
of the facilities of the DECsystem-18 operating environment, and also
to avoid wvarious problems that have arisem in normal use of
"standard’ POP-7,

To use the POP-1P system, type:
R POP1G

The POP-1%4 system will be started:; it will print a header line
identifying the system version and then:

setpop

and the system is now waiting for you to type commands to it, Y ou
may type normal POP-? commands, which will then be executed. You may
also instruct the system to compile specified files of POP-=2 program,
or you may define functions by directly typing in suitable text,
(The system can be made to automatically compile a file when starting

POP -1 USER ‘S MANUAL version 120(363) 30-Apr-76 Page 3
Introduction

up, by using the INIT.POP facility - Section 3.2.)

To compile a file of POP-? program, (say) FILE1,POP, type a

command to POP=18 in this format:
COMPILE ({FILE1.,PDPT);

Note that ",POP" is the recommended extension for files of POP-2
program text,.
Using COMPILE in this way will work even if the file has line~numbers
in 1it, according top standard DECsystem=18 conventions, provided that
the POP-1 system has been assembled to include "S08" caode, :

To leave POP-184, type the control-character {C followed by #X,
This will cause the POP=-10 system to return control to the manitor,
printing the messages

int:
Exit POP1R

The warning
%PEDBNE buffer not empty
will also be printed if the PED buffer is not empty.

If you leave the POP-1§ system, yvou may subsequently continue by
using either the .CONT or the .REENTER commands, provided the POP-10
core-image has not been destroyed., The ,CONT command will make vyour
FPOP-19 program continue as it was before the interruption: +the
,AEENTER command will causs execution of the POP-1 program to be
suspended, and

ready
@::

will be printed., The program is now in a "READY" break and vyou may
type POP-1F commands to examine its state, 7To continue the suspended
program and leave the break, type 7.

1.3 Accuracy 0f Numbers

There are two types of number representation in POP-18, called
Integers and AReals, Integers are in a fixed-point integer two's
complement representation, with a sign bit and 33 magnitude bits,
Numbers 4in the range -2%33 to (2433 =1) caf be dirEctly represented,
i.e. -B,589,934,592 to B8,589,934,591. Boolean truth wvalues are
represented with the integers 0 and 1, and positive integers may also
be treated as 33~bit logical bit-strings.

Real numhers are in a hase-2 system with B-bit expanent, and
25=-bit fraction {(and sign), &and can represent numbers in the range of
magnitudes: approximately 1,.70£+38 to 1,47E-39, with an accuracy of
about 7 decimal places,

POP-10 USER'S MANUAL version 12D(363) 3@=Apr=-76 Page 4
Introduction

1.4 Errors In POP-2

The system now handles errors slightly differently, When an
error is detected, the system first prints a message. Then it enters
a break to permit more information about the error to be collected if

" L1}

needed, For example, vou may type ? to get an explanation of the
error number, or you may type "y to obtain a listing of the
calling seguence of functions. You may also examine variables or

perform other computations by +typing normal POP-10 commands (see
Section 3.4).

When the break is terminated (by typing t2Z). the system restarts
at the top level {(or at the current superior break if there is one
active). Now, however, control leaves any functions being abandoned
with @& normal jumpout action, so their local variables are unwound
properly,

If tZ is typed at the top level {not inside a break) then the
top level SETPOP or SETEDIT is simply restaerted, instead of causing
an error,

2.8 GSUMMARY OF CHANBES FROM POP-2

The changes from strict POP-~-2 are mainly extensions which should
not affect existing POP2 programs (provided the new standard
identifiers do not clash), However, there are same changes which
alter statements in the Reference Manual, Additionally, there are
some facilities and features in this POP-1f system which are not
strictly part of the language itself, such as the POPMESS facilities
and the {C interrupt facility mentioned above, These will be
desecribed later,

The changes from Reference POP-2 are:

". WORDs and identifiers may have up toc 127 characters
2. The character-set is 7-bit ASCII

3. WORDS and CSTRIPs have 7-bit components

q., Upper and lower-case letters ARE distinguished

5. Exponents in real numbers are usually indicated by "E
6, Operations of precedence 1 behave slightly differently

7. GBECTIONS have different syntax and semantics

POP-10 USER'S MANUAL version 12D(363) 3P=Apr-76 Page 5
SUMMARY OF CHANGES FROM POP-2

8. Conditionals may appear at the top level

9. AND and OR may conjoin expressions in arbitrary contexts -
see Hection 2.5

2.1 Long Identifiers

The ability to have identifiers lenger than 8 characters may
affect some POP-2 programs if such identifiers have been spelled in
different ways after the 8th character, For example, “MACRESUL" is
no longer eguivalent to "“MACRESULTS", Variant spellings of long
identifiers will probably show up through ‘ecomments’ messages when
the program 1s compiled, though unfortunately this cannot be relied
upan,

2.2 ASCII Character Set

The change of character set to 7-bit ASCII is prompted by the
fact that that is the standard character-set in the DECsystem-18, A
few of the characters in the POP-2 Reference Language are not present
in the standard ASCII set, particularly the ‘subscript-ten’
character, On the other hand, there are many more characters
available in ASCII, including contrel characters, two cases of
letters, and wmore punctuation marks, Abolition of the POP-2
character set has avoided many difficulties in programming I/0, both
for the user and for the POP-18 system itself. However, all uses of
character codes directly by number will have to be changed. Words,
identifiers and character strips written directly in to the program
will not be affected by this change, since the itemiser (INCHARITEM)
will automatically insert the correct character codes.

Upper and lower case letters are now distinguished, ALL
standard identifiers in POP-1f are in Upper case letters. There is a
casa-control facility available in CHARIN similar to that im TECO,
and described later; the default state is to force all letters from
the terminal to be treated as upper-case, so terminals which generate
lower-case characters will not normally cause difficulties,

Because not all characters in the POP-2 reference language arae
actually present in standard ASCII, certain changes have been
required in the syntax for individual text items.

An exponent in a real number is now normally =signalled by the
letter "E", but this chaoice of cheracter can be changed (with the
POPMESS5~BUBTEN facility)}. This use of "E" gives the same format for

reals as FORTRAN uses, E.g.: 1.0E6 is 1 million,

POP =18 USER’'S MANUAL version 12B(363) 3P=Apr-76 Page 6
SUMMARY OF CHANGES FROM POP=2

In the POP-2 reference language, the closing string guote
charaecter is a grave accent "'", However, this mark is only
available on terminals with lower-case, so the two characters “!" and
"8" are also treated by POP-1@ as closing string quotes. E.g.
‘A12 31 is equivalent to ‘A12 3@ and to ‘A12 3'. When a character
string is printed by the function PR, & closing string-quote
charecter has to be printed at the end, The system initielly prints
a grave accent, which will actually appear as "8" on hard-copy
devices without lower-case capability, but the character printed can

be changed (e.g. to "!") by the POPMESS-ENDSTRING facility described
later.

The itemiser treats all control characters as terminators if
encountered while reading & number or word: inside a character
string any control charactsrs will be inserted into the string along
with the other characters of the string. Outside a string, the
control character tA has special significance: it starts an "end of
line comment® and all characters from the tA up to the next following
line-feed will be completely ignored, This facility will make it
much easier work to comment POP-18 procgrams,

FUNCTION SUMER X Y: tA A function to add sgs of numbers
tA The two numbers are in X & Y
XEX + Y#Y, tA Multiplication is faster than 12

END;

Words and character-strips now have 7-bit components, This
change permits them to hold ASCII characters, and should not cause
any difficulties,

2.3 Operations

UOperations of precedence 1 do not conform exactly to the
definition given in "Programming in POP-2", They cannot be used as
infix operators, and can generally only be written in the same
contexts as ordinary non-operation variables, If such an operatian
identifier (e.g. "B1") is preceded by & unary minus or followed by a
‘dot-operator’, then the operation dis run first, and the value
produced (if eny) is then negated or operated aon by the dot-operator.
T hus

~-01.PR:
will print the negative of the value produced by 81, Jjust as for an
ordinary variable in the same context,

2.4 SECTIONS

The definition of SECTIONS given in the ‘silver book’ has not
been followed in this implementation;: all POP-2 implementations have
conformed to ancther definition for this facility, which is described
in Section 64,

POP-1% USER'S MANUAL version 12D(363) 3@-Apr<76 Page 7
SUMMARY OF CHANGES FROM POP-2

2.5 CLCONDITIONALS

Conditional statements starting with IF, LOOPIF, UNLESS and
UNTIL may be typed at the taop level, and are no longser restricted to
appearing inside function definitions.

The syntax words AND and OR may now be used to separate
expressions in all normal contexts, and are not restricted to
appearing in the conditions of conditional statements. This permits
such constructions as

IF (L,ISLINK AND L.,HD="vWw")
OR (L.ISFUNC AND L .FNPROPS/=NIL) THEN,.

AND and OR take an item fraom the stack, from the preceding
expression, and conditionally evaluate the fnllcw1ng expr9581on(s)
The scope extends to the following "closing bracket"” "THEN", or
assignment arrow.

AND evaluates to FALSE if the previous expression preoduced
false, otherwise evaluating the following expression.

OR returns the value of the first expression 1f that is not
FALSE, otherwise evaluating the following expression.

3.0 OPERATING SYSTEM ASPECTS OF POP-140

3.1 tC Intercept Facilities

When control«ll is typed on the terminal, the next time PORP-=-10
requests input from the terminal the normal execution of the program

15 interrupted and a special routine takes over. This is called the
'Control-C Intercept’ The intercept routine types the message
int:

to show that it is waiting for vou to type in & control character,
When this happens, you must type in one of the following characters,
and this will cause the effect indicated in the following table. If
you type any other character to the intercept routine it will be
printed back at you and ignored, except that "H" (for Help") will
cause & short reminder to be printed,

<CR> dismiss interrupt, continue program

{tC exit to monitor level at once
X exit teo monitor level (prints Exit POP1p)
G do a GETPOP - restart compiler
tR do a "READY" break - same as {C ,REENTER

tE print current calling sequence and continue

POP-1% USER'S MANUAL version 12D{363) IP~Apr=76 Page 8
OPERATING SYSTEM ASPECTS OF POP-14

tF do a SETEDIT - restart compiler in edit-mode
tF does a SETPOP if edit mode is not available

3.2 INIT.POP Facility

If you have a disc file ODSK:INIT.POP in your default disc area when
POP-12 is started or restarted, then that file will be compiled
automatically by the system before SETPOP is called. This makes it
easy for vyou to perform any regular initialisations you require in
POP =19, perhaps in the form of compiling your favourite utility
functions,

3.3 INPUT FROM THE TERAMINAL

POP -1, like POP-2, possesses the standard function CHARIN,
which is & character repeater for input from the terminal, CHARIN
daes not always return precisely the characters typed at the
terminal:; it responds specially to certain control characters, and
you can alsog enter lower-case characters from an upper—-case terminal
using the facilities as described below.

Certain characters are treated specially by the monitor when
they are typed on a terminal, and the POP-1Q program will never be

able to receive them directly from the terminal. Those characters
are;
{1C which sends control to the intercept routine (see above)
<rubout> and tU which control editing of the input 1ine
{0 which controls suppression of output to the terminal
tR causes retyping of the current input line
+T causes & UBESTAT message to be printed by monitar

The following control characters have a special effect inside
CHARIN, as described:
47 is translated to <termin> [break char.]
$F forces SETEDIT (or SETPOP) [not break char]
tG Torces SETPOP [break char]

10 ‘gquotes’ the following character

tv controls lower-case conversion of letters
‘W controls upper-case conversion of letters
I makes lower-case punctuation mark

The character #Z is translated to <termins by CHARIN, and many
POP-18 programs which expect input from the terminal will have their
input terminated by typing this control character, It is a break
character, and will be received by CHARIN as soon as it is typed.

. The characters tF and 4G have the same effect typed in to CHARIN
as they do when typed to the contrel-C intercept routine, However,
note that ¢F is not a 'break’ character, and therefore has to be
followed by (e.g.) <esc> to take effect, Note also that these

POP-19 USER'S MANUAL version 12D(363) 39-Apr-7a Page 9
OPERATING SYSTEM ASPECTS OF POP-18

characters do not cause erasure of gny characters typed previcusly an
the same line; therefore it may often be more appropriate to type tC
and then the reguired control character,

The control character 4@ may be used to ‘quote’ & control
character from the 1list abave; it causes CHARIN to return the
following character unchanged., However, this cannot be used to type
in the characters 10, tRh, tT, 0 or U directly since the monitor
handles these specially. The t3@ gquotes any other character; i.e, it
prevents case-conversion of letters,

The caontrol characters +tV and W control alphabetic case
conversion much as in TECO, Initially POP-1¢ does not change the
case of any alphabetic characters typed in. Typing *WtW puts CHARIN
in Upper-case mode, where it automatically turns all alphabetic
characters into upper case, This is the default state, Similarily,
typing tVtV will put CHARIN in lower case mode, where all alphabetic
characters are turned into lower case,

Typing either tWtVv or VW will +turn off automatic case
translation, passing letters to POP-13 exactly as typed., Also,
irrespective of whether there is automatic case translation in force,
@ single letter at & time can be turned into upper case by prefixing

it with a simgle tW, or into lower case by prefixing it with a single
tv.,

The character ¢t {(ctrl shift 0) is ignored unless the following
character is one of "@", "[", "\", "1", "+", or "«", In that case,
the character is converted to its lower-case range equivalent,
namely: grave, open brace, vertical bar, close brace, ‘tilde’, or
‘rubout’, (Thus t!= will come through as <rubout>, but this feature

will not often be useful,) $t\ is converted to vertical bar e

The function INASCII is similar to CHARIN, but none of these
special case cenversion facilities are in cperation. INASCII returns
all characters exactly as typed, except Ffor tC, etc,

3.4 The Error/Break Package
3.4.1" Intreduction -

The POP=18 system has a new package for handling errors and
breaks, It is based on the old system and is superficially similar,
but much the code has been rewritten, and further changes are
planned., The general intention is to approach the convenience of the
UCI~-LISP system with respect to error-handling and breaks,

The break package provides a facility for suspending execution
of a program to examine its state, retaining the ability to continue
execution when desired, A Break can be entered in one of four ways:

POP-1# USER 'S MANUAL version 12D (363) 3B-Apr-76 Page 14
OPERATING SYSTEM ASPECTS OF POP-1p

i+ By typing tR to the 1 intercept
2. By giving a REENTER command to the monitor
3. By calling the function POPREADY : or

4. Automatically, when an error ccecurs.

When an error is detected by the system, the function ERRFUN is
called to print an error message, and then (when ERRFUN returns) a
BREAK is entered, When the break exits, SETPOP or SETEDIT is called
to restart the system at the top level,

If an error is detected during a break, then the system routine
POPERRDOR will casll first ERRFUN, then a nested break, and Finally
control is returned to the superisr break, rather than back to the

top level, In this case, when control returns to the superior brealk,
the message

readyset

is printed, and the compiler is then restarted in that 1level of
break,

Since breaks may hecome nested as a result of errors or for
other reasons, the prompt string is set in a break to a string of the
form "n:: ", whera <n> is "@" for the topmost level of break, and

increases for nested levels,

See Section 8.3 for more advice about changing the treatment of
errors in special systems,

3.4,2 Errors, -

When an error occurs, the standard function POPERAROR is applied
to items giving informatlan about the error., POPERADR can be applied
by the user to cause an error. It first calls the function ERRBRFUN top
print an error report, Then, when ERRFUN returns, it may call an

automatic break and it then returns control to the tup level or ta a
superior break,

POPERROR 1is protected, and is used to cause errors, ERRFUN is
unprotected, and may be changed in order to obtain non-standard
treatment of errors,

The standard value of ERAFUN is the function S5YBERR, which is also
available in the standard protected varisble SYSGERR, See Section B.3
for advice on changing ERBFUN, POPERROR , ERRFUN and SYSERR all take

identical arguments, as described in the details of BYSERR in Section
7.

POP-1@ USER 'S MANUAL version 12D(363) 30-Apr-=76 Page 11
OPERATING SYSTEM ASPECTS OF POP-10

ERRFUN does not normally print a great deal of information: it
gives the error number, the culprit{s) and the Ffunction(s) being run
and compiled, if any, and also the section name when appropriate, If
FULLERR is set, it alsn prints the contents of the user stack, but
without disturbing the items in 1it. In some systems, & standard
unprotected variable NICERR is provided, In this case, &n
explanation of the error number is also printed autaomatically if
NICERR is nonzero.

Then a break is called in most cases. The exceptions are:

'« If a stack overflowed, then no break is called, but control
is returned to "readyset” or SETPOP or SETEDIT as
appropriate, after printing the calling sequence.

2, If the error is 'no more memory ', them no break is entered,
and any breaks 1n existence at the time of the error are
alse ighored., After ERRFUN returns, the calling sequence is
printed and then control is sent back to SETPOP ar SETEDIT,

3, If the error is a PED editor error, and PEDSHTERR is true,
then no subsidiary hreak is entered, and control returps to
the current break or to the top level.

After the break, control returns to the top 1level or to =
superior break, When this happens, the local variables of all
functions being left are unwound. This differs from previous
versions ef POP-2 and POP-1@, where after an error the local
variables could still be examined in the variables of their names (it
was the global versions of these variables which wers smashed),

It will be noted that SYSERR prints neither an explamation of
the error {unless NICERR is on), nor the calling sequence at the time
of the srror. These items of information, and the values of any
local variables of interest, may be obtained during the break,
Indeed, the calling seguence and local variables cannot be examined
once the break has heen left (which is why the caelling sequence is
printed automatically on stack overflow or store exhaustion),

1f a stack overflows, the stack concerned is extended slightly
to permit the error function to run, but no break is entered, {The
stack concerned is restored to its normal length when ERRFUN
returns,) If the same stack overflows again during executiopn of
ERRFUN (this cannot normally happen unless ERRFUN has been redefined
by the user) then the message

?repeated stack pverflow

is printed, and control returns direct to SETPOP or GSETEDIT at the
top level, However, if it is the auxiliary stack which overflowed
catastrophically, then local variables of functions being abandoned
are NOT unwound normally,

POP-10 USER ‘S MANUAL version 12D(363) AP-Apr=76 Page 12
OPERATING SYSTEM ASPECTS DF POP-10

I1f an error did not enter a break for some reasan, or 1if vyou
have left the break, you can still get an explanation of the error by
calling POPXPLNER,

3.4.3 Breaks -

The break routine POPREADY has now been changed slightly to make
it more useful at errors, The changes have actually heen obtained
mainly by altering the standard value of POPRDYFN,

When the break is first entered, POPRDYFN scans PROGLIST {(which
has been redefined to come from the terminal) looking for either of

H " (1]

the special words 7" or ":.

"

If you type "?" at the start of a break, an explanation of the
most recent error is printed (with POPXPLNER)., If you type "M oat
the start of a break, the current calling seguence of functions is

printed (with POPTRACE),

POPRDYFN stops scanning PROGLIST &as soon as it sees any ‘text
item other than these, and the rest of the proglist (with any initial
guestion marks and colens removed) is compiled in the bresak,. This
makes it easy to examine variables or perform pther computations in
the break, by typing normal POP-2 commands.,

You can leave the break by typing tZ or GOON,

A break can be entered by any of the routes listed garlier, and
the special treatment of "?" and ":" at the start of the break apply
in all of these cases, although this was motivated mainly by the

needs of an error break,

If the top level of the system is in edit mode {i.e, SETEDIT)
then all breaks compile in edit mode {once POPRDYFN is done). In
this case, their prompts are of the form "n!!=" to indicate that.

If 8 user wishes to change POPRDYFN, it is desirable to make the
replacement perform the sams job on initial question marks and
colons. The current definition is, in effect:

FUNCTION POPRDYFN: VARS X
LODP: ITEMREAD{)=->X;
IF X="7" THEN ,POPXPLNER; 1.,NL;
ELSEIF X=":" THEN ,POPTRACE; 1.NL;
ELSE X::PROGLIST ~->PROGLIST; 1.NL EXIT
GDTO LOOP:
END

There may be reason, in some programs, to replace POPROYFN by another
function which performs the same Jjob, but also recoghises ather
code-words as requests far ot her problem-specific pieces of
information,

POP-1F USER’S MANUAL version 12D(363) 3-Apr-76 Page 13
OPERATING SYSTEM ASPECTS 0OF POP-18

Mote that POPRDYFN uses ITEMREAD to read items, This could
cause trouble if & macro is typed at the start of a break, which
expands into NONMAC <some macro», because the NONMAC will be stripped
of f by ITEMREAD the first time round, and then the following macro
will be expanded first thing inside the compiler in POPREADY. The
solution is to type a semicolon or some other harmless text item
before such a macro, at the start of a break,

On the other hand, a macro (say) "??" could be defined to expand
inte 7 and : and perhaps some other standard infeormation printing
call. Then 77 cauld be typed at the start of an error break, to get
all of the desired information,

3,5 8System Crashes

If POP18 crashes with a message

?GCFAIL at user PC nnonnn
or

?2ILL MEM REF at user PC nnnnnn
the job is stopped with the terminal in moniter mode., At this point,
it will not be possible to continue or restart: a new R POPAD
command will have to be given, However, first save the core image
with a « SAVE monitor command. The resulting .S5AV file can be

used by your POP18 implementation consultant to determine the
problem,

POP-1# USER'S MANUAL version 120(363) 3p~Apr-=76 Page 14
POPMESS FACILITIES

4.8 POPMESS FACILITIES

The standard function POPMESS is used to communicate with the
operating system for various purposes, This includes ohtaining all
facilities for data and program input and output (except through
CHARIN and CHAROUT), and also permits a variety of other facilities,
The function POPMESS always takes a list as argument, and the head of
the list must be a word « one of a set of control-words recognised by
POPMESS, The control-word is actually converted to GSIXBIT form
inside POPMESS, so it does not matter whether the characters are in
upper or lower cass, and only the first six characters are
significant,.

The control words recognised are listed below in turn, with
brief notes on their uses. A few of these words are marked with an
asterisk (*), which means that that word controls an optional
facility in POP-18, and may not be accepted by every implementation.

Some of the POPMESS facilities involve access to files on disk
or in other media, in these cases, the sighn ‘~filespec-' means a

seqguence of list elements comprising one or more of the following:

dev: filenm.ext <prot> proj,prog

.01 DSK: RUNIT.POP <B:155> 0:4076,8:352

In this file specification, ‘dev’, ‘filenm’ and "ext’ will be either
words or character strips containing the requisite characters, and
they are converted to SIXBIT format so it does not matter what case
the 1letters are in, ODnly the first six characters of 'dev’ and

‘filenm’, and only the first three characters of 'ext’, are
gsignificant.

OFf these items, only ‘“filenm' wmust be present, and this may he
omitted if a device is specified. A 'dev' is signalled by a
following colon word, an “ext’ is signalled by a period, a protection
code is signalled by a "<" word. The protection code, if preasent,
must be a positive integer between 0 and B:777: it is usual to use
the B:xxx format for octal integers, since the three octal digits
have separate significance. The project and programmer numbers, if
present, are separated by a comma, and are normally given as B: octal
integers,

Usually only a filename and extension are given,
e.0., PRUNIT, PGP . In this case, the ‘dev’ defaults to DSK:, the
protection defaults to the system default <B55> ar <@57> (the
nrotection d4is ignored except in OUT, OUTBAK, QUTCCT, PROTECT and
BENAME), and the PPN defaults to the default search path (normally
the user's logged-in RFPN),

If a comma is included for the PPN, it is possible to omit
gither or hboth of the project and programmer numbers, in whirh case
they default to the project or programmer number under which the joh
is 1logged in, Far example, a job logged imn under [4858,352] may
access the file TEST ,POP[4B76,352] with the filespee

POP-18 USER 'S MANUAL version 12D(363) 3@-Apr-76 Page 15
POPMESS FACILITIES

[TEST .,POP B:4076, 1.

Sub=File Directories (SFD'S) may be accessed if the appropriate
code is included in POP-1% (this is an assembly-time option). The
SFD path is specified in the normal way. For example, %the file
PAOG.POP in the SFD BLURBS of the UFD [485@,352] may be accessed with
the filespec

PHOG.POP 8:4P50, 8:352, BLURES

If the job is logged in under [4858,3521, this can be shortened to
PAOG ,POP,,BLURBS

The special device identifier LIB: may be used ij POP-1B file
specifications., This provides access to the POP-1% program lihrary.
For example, the following two expressions both provide input
character repeater functions for the same library program

POPMESS ([IN LIB: ALLSORT,LIB]) and LIBRABY([ALLSORT])
This facility, however, also permits such constructions as

POPMESS ([RESTORE LIB:POPLER,SVP]);
where access to the library 1is mot for an ordinary character
repeater,

The various POPMESS control words follow, grouped according to
function.

4,1 FILE CONTROL

IN
POPMESS ([IN ~filespec—]) returns an input character
repeater funoction for the specified file, Note that the
repeater will supply 7-bit ASCII characters, terminated by
<termins,

INSDS *
POPMESS ([INSDOS -filespec~}) returns an input character
repeater function for the specified file, like POPMESE in.
However, if the input file has line numbers as created by
LINED or S0S, the 1line numbers are omitted by an INS0S
repeater, whereas they are included in the stregam of
characters from an IN repeater.

ouT
POPMESS([OUT -filespec-1) returns an output character
consumer function for the specifisd new file, The
cansumer function should be applied to 7-bit ASCITI
characters, and the new file will be created when ths
outnut stream is closed (usually by applying the consumer
to <termin>}, When the output stream is closed, any old
file of the same name will be lost. .

If a protection is specified, it is used for the new

means an optional facility.

POP~-10 USER 'S MANUAL version 12D(363) 30-Apr-76 Page 16
POPMESS FACILITIES

fFile. Otherwise the file keeps the old protection if it
supersedes a file of the same name, or else it gets the
system default protection.

QUTBAK
POPMESS ([OUTBAK ~filespec—]) is like POPMESS-0OUT in
creating a character consumer function., In this case,
however, when the output stream is closed, any old file of
the same name will be renamed to have extension .BAK,
(The protection code for- the .BAK file will be that
specified for the new file, if any, or else the protection
the old version had, except that the gwner s protectian
field is reduced to 0.)

If the output device is not the default (DSK:), or if

a PPN is specified, or if the extension 1s .BAK or ,TMP,
then POPMESS-0OUTSAK is treated as POPMESS-0UT, and no
attempt is made to preserve an older version,

QUTCCT
POPMESS([QUTCCET —=filespec-]) will return an cutput
repeater for the specified file, 1like POPMESS out,
Mowever, this output repeater will translate control
characters to Upaerrow format, in the same way as CHAROUT
does (g.v.). This facility is dintended for use when
sending files to the line printer, etc,, and there is no
'backup’ version of OUTCCT.

CLOSE
POPMESS ([CLOSBE <«I/0-function»>)]) will close the specified
input or output stream., The second item in the list may
be either an I/0 function {(i.e. & character repeater or
consumer, or a BLOCKIO doublet), or it may be a <word>
whose VALOF is such a function, (This option is available
in all POPMESS calls which expect an I/0 function as an
argument,) If the functicn was & character consumer, this
will have the same effect as applying it to <termins,

BLOCKIO '
popmess ([blockioc -filespec-]) returns a doublet Far
performing binary block-data transfers between the named
file and POP=2 data structures, This facility is
available for files on disc, DEC-tape or magnetic tape,
but is only encouraged for disc files, It is described in
more detail below in Section 4.5,

EXIBTS
POPMESS ([EXISTS -filespec~]) returns TRUE if the
specified file exists and can be looked-up, otherwise it
returns FALSE.

LENGTH
POPMESS ([LENGTH -filespec~]) returns the number of POP-10
words writtenm in the specified file (each word 36 bits),
If the file is on a DEC-tape, the length result will be
rounded up to the next multiple of 127 decimal (giving, by
division, the length of the file in blocks written),
UNDEF is returned if the file does not exists or cannot be
accessed,

LOOKURP #* :

POPMESS ([LOOKUP ~-filespec-]) returns UNDEF 1f the file

POP-18 USER’'S MANUAL version 12D(363) 30-Apr-76 Paga 17

POPMESS

FACILITIES

cannot be accessed or if it does not exists, but otherwise

p a list of information about the file. It gives

RENAME

the same information as the /8" switch in DIRECT, The
list is of the form

[<length> <prot> <acc-date> <cr-time> <cr-date> <mode>]
These items are all positive dintegers: the 1length in
blocks, the protection code (#-8:777), the date of last
access, the creation time and date, and the mode in which
the fFile was written., The date integers are in the form

((year-1964)*%12 + month=-1)%31 + day=1

and the <cr=time> is im minutes after midnight,

POPMESS ([RENAME -newfilespec- = -oldfilespec~]}) looks up
the file =-o0ldfilespec— and renames it according to
-newfilespec~., This can be used to change protection, or
more generally to rename the file, very much like the
LAENAME monitor command.

Note that if vyou wish to specify the ‘dev:’
explicitly, this must be done in ~oldfilespec~, which
differs from the LRENAME command, A file cannot be
renamed into a different filee-structure, though on DBK:
it can be renamed into a different PPN if you have the
necessary privileges,

If a protection is specified, it is wused, but
otherwise the file's protection remeins unchanged,

PROTECT

DELETE

COMPIL

EDIT *

WIDTH

POPMESS ([PROTECT <filespec>] 1looks up the specified file,
and them changes its protection to that specified in the
filespec., If no protection code is specified, then the
protection is set to zero,

E.g.: POPMESS([(PROTECT INIT.,POP <B8:155>]);

POPMESS ([DELETE —-filespec=]) will delete the specified
file from its file-structure,
E
POPMESS ([COMPILE -filespec=])

is equivalent to
COMPILE ([FILESPECT)
and causes the text of the specified file to be compiled
as &a POP=-2 program. Note that the input character
repeater argument of the function COMPILE is available as
the standard variable POPCREP, and may be found there
during the break after a compiling error,

POPMESS ([EDIT =-filespec-]}} is wsually omitted, but if
present calls the BSERAED editor to edit the file., This
geditor is essentially the old LIB POPEDIT slightly
improved, The PED-editor is also available in PORP-10.

#*

POPMESS ([WIDTH <i/o-function> <width?>1]) allows vou to
read or specify the page-width for an output stream,
Normally an output stream will include exactly those AGCII
characters sent to the consumer function, However, if a
width is specified, then extra new—-1ines will

POP-10 USER'S MANUAL version 120(363) 3IP-Apr-76 Page 18

POPMESS FACILITIES

I-NK

automatically be inserted by the output consumer if
necessary, If this facility is included, then CHAROUT has
the same width din POP-1F and the Monitor. The width of
CHARQUT may be changed with either the POPMESS-WIDTH
facility or with POPMESS-TTY. All other consumers have a
width limit of @ initially, which means "no limit’,

If a width limit is speecified 4in POPMESS width, 1t
must be an integer betwsen. @ and 8:77777 inclusive;
POPMESS sets the 1limit and returns with no result,

If no limit count is included in the argument 1list,
then POPMESS returns the current limit, e.g.

POPMESS ([WIDTH CHAROUT] }=>

% 902

#*

POPMESS (fLNK TTYnnn:]) returns a doublet for asynchronous
inter-computer cammunications with another computer using
the specified asynchronous 1line, See Section 4.6 for
details,

4,2 INFORMATION AND CONTROL

DATE
POPMESS ([DATE]) returns +three integers: day, month,
year,

DAY
is & synonym for DATE,

TIME
POPMESS ([TIME]) returns an integer, the number of
milliseconds (real time) since midnight last.

RUNTIME
POPMESS ([BUNTIME]) returns two integers:
<runtimes>, <gctime>.
Both times are counted in milliseconds, The <runtime> is
the total run-time for the Jjob (CPU time), excluding time
spent in garbage collection and storage compaction; the
<gctime> is the CPU time spent in garbage collection and
storage compaction, i.e. the overhead time for the dynamic
storage allocation schemeg.

CORE

POPMESS ([CORE]) returns two integers:; <maxcore», <core>.
Both figures are core-sizes in K-words for the low
segment. <core» is the currently allocated space
available for the user's data structures and programs, and
<maxcore> is the maximum limit to which this can rise (and
depends on the computer administratiaon). (The figures are
actually 2 or 3K less than the true low segment size,
since the system’s own area and the stacks are gmitted,)
POPw-10 will dynamically alter the amount of space
allaocated to suit the situation, subject to the upper
limit, The user can change the amopunt allocated directly
with:

POP-1F USER'S MANUAL version 120(363) 3R -Apr=76 Page 19
POPMESS FACILITIES

POPMESS([CORE <size>])
which attempts to change +the allocation to the amount
requested (in Kewords), and returns a truth-value: TRUE
if the request was successful,

After such a call POP-18 will not automatically
reduce the coresize below the 1limit specified amount,
however much core is subseguently reclaimed by the garbage
collectaor, To reduce the core size again, you must use
POPMESS-CORE, or restart,

PPN
popmess ([ppnl) returns twao integers: <projects,
<praogrammer>. They are the user’'s logged-in project and
programmer numbers,

PPND
is a synonym for PPN,

PJOB
POPMESS([PJDB]) returns the number of the Jjob currently
running.

MTAPE *
POPMESS ([MTAPE <I/O-function> <integer>}) per forms an
MTAPE operation as for the MTAPE MUUO (cf., "“DECsystem~18
Monitor Calls”), The I/0«function must have been opened
for input or output with a DEC~tape or a magnetic tape,
Only certain integers from @ to 8:17 and B8:100 or B8:101
are valid - see documentation for maonitor.

LOCATE #*

POPMESS ([LOCATE <station>]) is eguivalent to the LOCATE
monitor command, The specified remote station is selected
for further spooled input and output when not over-ridden
by explicit device specifications,

DEVCHR '
POPMESS ([DEVCHR <«I/0-function>]) wuses the DEVCHR MUUO to
get the 'device character’ bits for the device involved in
the specified I/0 function. The left-hand half-word of
DEVCHR'S result is returned as an (18~-bit) integer an the
stack,

BETSTS
POPMESS ([GETSTS <I/0-functionm>]) uses the GETSTS MUUO to
get the status bits for the device involved in the given
input/output channel. The 18-bit result is returned as an
integer,

ENDSTR
POPMESS ([ENDSTR <ASCITI code>]) changes the character
printed by PR at the end of printing a string constant
argument., Initially it 1is B8:14¢ which dis 1lower case
grave, hut with some teletypes 8:41 = "!" may be
preferred,

SUBTEN
POPMESS ([SUBTEN <ABCII ecode>]) changes the character used
as <«<subtern> Tor real-number exponents, Initially this is
B:i05 ="E", but B8:877 = “"?" may be reguired for reading in
data files created by POP-2 systems,

POP-1¢ USER’S MANUAL version 120(363) 30=-Apr-=76 Page 20
POPMESS FACILITIES

4,3 JOB CONTROL FACILITIES

SAVE

POPMESS{[SAVE ~filespec—=]) creates a new file to the
given specificatiaon, and writes in it a complete copy of
the user'’'s current program and data~structures. It then
returns with the result FALSE to show that the program has
just been saved, A subsequent call of POPMESS HRESTORE
will cause the saved core image to be reloaded from the
file, and execution will continue exactly as before,
exiting from the call of PDPMESS SAVE, except that POPMEGS
now returns TRUE to show that the program has Jjust been
restored, After a program has been restored, there will
be no input or output streams active, except for CHARIN
and CHAROUT, Any I/D functions saved in the BAVE-FILE
will sppear to have been closed after the file is restored
{though they will remain active through the original
SAVE-ING of the program),

The preferred extension for files made by SAVE 1s ,8BVP
(saVe-Pop). The call will normally resemble this example:

IF POPMESS([SAVE thispr.SVP]) THEN restartfn() CLOSE;

where "restartfn” stands for some function to restart the
saved program,

AESTORE
POPMESS ([RESTORE -filespec-]) restores a core-image of a
POP-1@ program previopusly made with POPMESS GBAVE, as
outlined above. In general, a SAVE file cannot bhe
RESTORED in any POP-10 system except the one in which it
was created,.

AESTART
POPMESS {[RESTART]) will cause the POP-1@ system +tao bs
re~initialised exactly as when it is first started., The
file INIT.POP will be compiled if it exists, and then
SETPOP will be called,

EXIT
POPMESS ([EXIT]) will return the terminal to monitor mode,
after printing the message:

Exit POP 10
Control will return from POPMESS with no result if the
CONT cemmand i1s given to the wmonitor. This call of

POPMESS is made automatically if #¢X is typed to the +C
intercept routine (see earlier),
HIBER *

POPMESS ([HIBER <sleep time» <wake bits>]) will cause the
job to hibernate for the specified length of fime or until
a Wake condition is satisfied. The sleep time is given in
milliseconds, and is subject to & maximum of about 68
seconds, A sleep time of zero means indefinite sleep.

The wake bits are encoded as follows (see the Monitor
Calls Manual for more information):
bit B8:18 = wake on character ready (HB,RTC)

8:20 = wake on line of input ready (HB,RATL)

POP-1# USER’S MANUAL version 12D(363) 30-Apr-76 Page 21
POPMESS FACILITIES

B:48 = wake on PTY activity (HB.RPT)

8:400000 causes job to be swapped out at once (HB.SWP)
N other wake bits are allowed,

Any hibernate will be stopped if interrupted by & #C
intercept, POPMESS ([HIBER @ #1); causes an indefinite
sleep.

4.4 TERMINAL CONTAROL

CL.RBFI
POPMESS ([CLRBFI]) will clear the terminal input buffer of
all characters typed ahead, This is useful somstimes in

recovering from Brror situatiaons, and is done
automatically by SYSERR,
POPTTON

POPMESS ([POPTTON]) turns off ¢0 print suppression, That
is, anything printed by the program just after this call
of POPMESS will actually get oprinted even 1if the user
types t0, This call of POPMESS does not exit until the
terminal output buffer is empty, in case the user types 10
after POPMESS was entered but while the output buffer
still has output queued for printing. This call of
POPMESS is made at the start of SYSERR te ensure that the
user gets the error message,
PROMPT
POPMESS ([PBOMPT <cstrip>]) changes the prompt printsad by
CHARIN at the start of each line of input, The normal
prompt is ': @, but this facility permits that to be
changed. POPMESS returns the <cstirip> of the old prompt
as result, in case the original prompt is to be restored
later, It is possible to get the same effect by applying
POPMESS ([PROMPT]): with the required cstrip on the wuser
stack, This is eguivalent to the above £all of POPMESS,
and no longer causes an error. The old prompt string 1is
still returned on the stack,
TTYIN ‘ ‘
POPMESS([TTYIN]) does a SKPINL UUO, and returns TRUE if
there is & complete line already typed ready for reading
from the terminal by CHARIN, Otherwise it returns FALSE,
This call of POPMESS also has the side-effect of restoring
printing if {0 has heen typed, but thils is subject to a
timing problem if the output buffer is not empty.
TTY # .
POPMESS([TTY <rodewords> <integer?>1) provides the
facilities of the SET TTY monitor command, If the integer
is omitted, it defaults to t, which means TRUE if 1t is =&
boolean switch, The cordewords recognised are:
ALT as SET TTY ALTMODE
BLANKS as SET TTY BLANKS
CRLF as SET TTY CRLF
ECHOD as SET TTY ECHQ

POP -1 USER'S MANUAL version 12D{(363) 30-Apr-76 Page 22
POPMESS FACILITIES

FILL as SET TTY FILL ~ takes & count @ to 3
FoRm as SET TTY FORM

GAG as SET TTY GAG

LC as SET TTY LC

uc as SBET TTY UC or NO LC
PAGE as SET TTY PAGE

TAB as SET TTY TAB

WIDTH as SET TTY WIDTH -« takes a count 16 to 200
All these, apart from FILL and WIDTH, take @& bopoolean
argument, Specify the integer zero to turn the facility
of f.
POPMESS ([TTY LC])};: is equivalent to .S5ET TTY LC .
POPMESS ([TTY LC B1]): is equivalent to ,SET TTY NO LC-
and similarly for the others,

GETTTY #*
is a synonym for TTY.

PEDMAHRK ¥
POPMESS ([PEDMARK char-codel) is provided if the PED
editor is present. Verify commands print a marker

character at the position of the buffer pointer, and this

POPMESS facility changes the character printed. Initiaslly

the character is "t", but 8:12, for instance, will cause a
line~-feed to be printed, Zerpo will stop printing of a
marker,

TTYTAPE #
POPMESS ([TTYTAPE <truthvalue»}l)} is optional, and controls
the wse of the auxiliary paper-tape reader provided aon
some terminals, The effect is similar to that of the

LS5ET TTY (NO) TAPE monitor command, If the truth-valuse

is TRAUE, then paper-tape mode is enabled, and reading of a
tape will start when #*Q is next typed on the terminal, and
stops when ¢8 is encountered on the tape. If 5§ is
punched repeatedly throughout the tape, you will have to
keep typing %49 each time to restart reading, but this does
no harm otherwise, If the truth-value is FALSE, then the
reader is stopped, the paper tape mode is disabled, and
tvping t& should no longer start the reader. If the
TTYTAPE facility is included, the paper tape mode is
automatically turned off by EYSERR and SETPOP,

4,5 POPMESS-~-BLOCKIO

POPMESS can be used to create a “BLOCKIO' doublet for binary
transfers between a file and POP-2 data structures, The file must he

on disk, DEC-tape or magnetic tape. The doublet iz created by a call
of the form:

POPMESS ([BLOCKIO ~filespec~]) => <biofn>
That expression returns a doublet function <biofns. As a
selector, <biofn> will read part or all of the disc-file into a data

structure (a record, strip or array), starting at a specified block.,

POP-18 USER 'S MANUAL version 12D(363) JR-Apr=76 Page 23
POPMESS FACILITIES

Its updater will write the contents of a data structure into the disc
file. IFf the -filespec— given to POPMESS identifies a file which
already exists, then the doublet’s updater will write into that file
in update mode; or will give a suitable error message if it only has
read access to that file, If there is no such file, then & new file
will be created, initially empty, and then that file will be accessed
in updete wmode. An srror is caused if the file does not exist and
cannot be created.

The blockio-function is used thus:
<hiofn> (<structure>, <block no.,»>}) => <block no.>

The block number supplied dis the logical block number at which
reading dis to start, It must be a positive integer between @ and
8:777777. Block 1 is the first block of the file, The block number
should not be used on the first read, but subseguently causes
reading to continue at the next block after the previous read, On
disc, any other bleck number causes a USETI UUD to that block, which
enables random msccess to blocks within a dise flle., On DEC-tane, |
hlock number grester than 1 similarly causes a USETI, but note that
this accesses & physical block on the DEC-tape, not a Logical block,
and this facility is not suitable for random accees to blocks of a
DEC-tape file, On magnetic tape, the block number is always ignored,
permitting only sequential access +to records written on the tape.
There is a qualification to this remark: use of the POPMESS MTAPE
facility may permit a more flexible use of magnetic tapes, but this
facility must be treated with caution.

The <structure> may be any record, strip or array, provided that
it dpes not contain any compound items after filling from the disc,
This is always the case if all components are simple packed items of
size 1 to 34, but there will be an error if there is a COMPND
camponent, The system checks that there are no compound items if the

structure contains full-item components, The structure may not be &
<words>,

The transfer from the file into the structure will read 1 or
more blocks, +the last perhaps only partially., If the file is on
dise, then the <block number> returned will be the logical number of
the first blaock following those read, If the file is on DEC~tape or
magnetic tape, then the result #§ is returned, Note, however, that in
any case, the result <termin> is returned if the transfer attempted
to read beyond the end of the file, In this last case, any complete
blocks from the starting block to the end of the file will have been
read into the <structure> (if it is more than 1 block long), but the
remainder of the structure’s contents will not have been changed.

On output, the updater of <hiofn> works similarily:
<structure> -» <biofns(<block no.») => <«block no.»

The structure and block number supplied are interpreted exactly as
for input, except that the structure is checked for compound items

@ e o A e - 4R W - = e S M WS ke W e S LR A T e ke e e

POP-17 USER'S MANUAL version 12D(363) 30=-Apr=76 Page 24
POPMESS FACILITIES

before the transfer takes place, instead of afterwards, A nonzero
block~-number to DSK: or DTA: will be applied with USETO before
output takes place, to select the block at which writing starts. The
transfer will lengthen the file if it writes beyond the previocus end,
so <termin> will never be returned as the "new block number”, The
block number 8:777777 for oputput to a disc file will cause new blocks
to be appended to the end of the file {(see description of the USETO
Uuo).

The usual method of reading or writing a file containing more
than one structure is as follows, The first structure is written or
read specifying Block 1., The <hiofn> returns a block number when
used, and this is wused for the next tramsfer: the block number
returned then is used next, and so on. This reads or writes the file
sequentially, and the technigue works for any BLOCKIO file.

4.6 POPMESS-L.NK
The call
POPMESS ([LNK —=filespec-]) => <link doublet>

returns a doublet for communicating with anocther processor over an
asynchronous teletype line. The teletype line must already have been
assigned by the monitor ASSIGN command, and the octher computer must
be connected and ready, The ‘-filespec~" should specify a device
TTYnnn: which will be the 1ine to use, There are no facilities in
POP1E for automatic dialling.

The selector function of the doublet will be for reading data
from the other computer - it is a "byte repeater’., The updater
function of the doublet will be for sending data to the other
computer, It is a ‘byte consumer function’, All communications take
plece by transmitting ‘Logical Files' frem one computer to another,
A logical file comprises & stream of # or more arbitrary B-bit binary
bytes (expressed as integers in the range @=255) terminated by
TERMIN, ASCII +text may be transmitted by sending one character in
geach successive byte, In this case, the ‘parity’ bit of each byte is
normally kept to zera, and the byte repeater and consumer functiaons

then act just like ordinary character repeater and consumer
functions,

A ‘link doublet’ is only capable of transmitting one ‘logical
file’ at a time over a link, At the end of esach logical file (TERMIN
received or sent}, a new logical file may be started, and the new one
may be in either direction, In applications with cooperating
computers, it is probably best 1f successive 1logical files are
transmitted in alternating directions, but this is not essential, At
the start of a new logical file, the direction of transmission is
decided by whether the repeater or the consumer is called next.

POP~10 USER 'S MANUAL version 12D(363) 30-Apr-76 Page 25
POPMESS FACILITIES

Certain warning messages may be printed on the terminal to give
information about the state of the 1link. These messages may be
suppressed by setting FALSE dinto the variable POPLNKWARNINGS.

A logical file is split up into & sequence of “messages" for
transmission, Fach message carries up to 71 data byltes of the
logical file, and the last message of the file also carries a bit to
indicate EOF, Each message includes CRC=-16 checksums, and must be
acknowledged by the receiving station befores the sender goes on to
the next message of the file,

Details of the protocol are given in the file LINKS,DOG,
The warning messages controlled by POPLNKWARNINGS are:

[waiting for message]

fwaiting. for ACK/NAK]

<hells> still waiting for one of the above
[stx missing]

[etx missing]

[checksum error]

{line error]

In addition, there are various errors that may oCccur, bhut these
usually indicate that the line has failed after several attempts to
transmit data, See Appendix A for the error messages,.

See the "INTERDATA 7/32 Users Guide" for details of oprogramming
the Interdata 7/32 end of the link, Note that if the Interdata is
receiving in ASCIT mode, it will receive only complete 1lines of

alphanumeric text, Lines are terminated by carriage returns (not
line feeds) in the Interdata system, and linefeeds are ignored,
Therefore, 2 «NL: to the 1link will have only the same effect as

1.NL: since the NL funetion anly sends one carriage return

character. Also, a carriage return must be transmitted at the end of
the last line of text transmitted, before the TERMIN, Note alsa that
when the Interdata is receiving in ASCII mode, it will read & line
into a buffer preallocated in user address space, and that very 1long
lines of text may be truncated, In general, 8F to 128 characters per
line is the most that can be relied upon to be received without

truncation. Nog error warning i1is given if a line is truncated for
this reasan,

POP-1F USER'S MANUAL version 12D(363) IP-Apr-76 Page 26
ITNCHARITEM

5.8 INCHARITEM

TNCHARITEM is the function which produces an input item repeater
from an input character repeater,

INCHARITEM E <character repeater> => <item repeater>

Because POP-13 uses 7-bit ASCIT with 128 characters possible,
compared with only 64 characters in POP-2, some changes have been
needed. The syntax definitions for the various types of character
groups: <integer>, <real>, <unguoted words and <string constant>,
are changed only minimally.

1. The syntax for integers is unchanged,

2., The syntax for reals is unchanged except for the <subten>
character, This character is initially “E", but may be
changed to any other character by using POPMESH5-GUBTEN,

giving the ASCII code of the desired <subtens,
3. The syntax for unguoted words is almost unchanged,

1. In alphanumeric words, upper and lower case letters are

distinguished, and any character is treated as &
<letters if it is preceded by the <vertical bar> "|" =
lower—-case ~\" = ©code B:174, This character may be

typed in, in CHARIN, by the combination "Ht\", This
feature permits unusually spelled identifiers to be
typed into programs. The character "#" may alsc be used
in alphanumeric didentifiers; it dis treated as a
<letter>, not as a sign., E.g. — NOUNHFPHRASE",

2 The list of <sign> characters has been extended and

adjusted:
<sign> 1:i= + - * / $ & =<>:1 7 N\t =7
3. The lower—-case braces | and } are alsoc <brackets>, and
may be decorated: {% and %}.
4. The closing string-quote characters are "!", "@", and
grave "an .

4. All control characters, and <spaces> and <rubout>, act as
character-group separators when encountered cutside string
constants, but are preserved unchanged inside string
constants (amnd of course act as <letterss if preceded by
code 8:174 outside of string constants).

5. The control-character tA is special in that it introduces an
‘end of 1line comment’ if encountered outside a string
constant (and not immediately preceded by code 8:174). The
previous character group is terminated by tA, and then the
A and all characters up to the next <line feed> are

POP-10 USER 'S MANUAL version 120(363) 3E-Apr-76 Page 27
INCHARITEM

ignored.

Note that this behaviour of A 1is a feature of the
itemiser, and not a feature of CHARIN, tA is not treated
specially by CHARIN, but conversely, this end=of-1line
comment feature is available while compiling files fraem any
spurce,

6, Inside a string, the string quote characters may be <treated

as normal characters, by prefixing them with a "!" “quote"
character. The "“guote” character causes the following
character to be included in the string: e.g. °|'@.

6.0 GECTIONS

The definition of Secticns has been changed from that given in
the ‘'Silver Book’, to conform with other implementations of POP-2
available.

The syntax for SECTION is changed slightly:

<exparteds> ::= =>» <declaration list element®7>
<importeds> ::= <declaration list element#*?>
<segctian name> ::= <identifiers

<section header> ::= SECTION ; |

SECTION <section name> <importeds?> <exporteds?s
<sectliaon> ::= <section headers> <program?> ENDGECTION

If "SECTION" is followed immediately by ":", then the section is said
to be "anonymous’, and it has no "imported’ or "exported’ variables,
Otherwise, the identifier immediately following "SECTION" is declared
as a maecrg, as explained later, and becomes an "exported’ variable in
addition to any other exporteds specified, All standard wvariables

are automatically accessible inside and outside the section,

The effect of GSECTION is as follows., All wvariables whose
identifiers are 'imported’ or ‘exported’ have a scope which extends
both inside and outside the section, and those variables may be
freely accessed everywhere., Variables declared outside the sectiaon
and whose identifiers are meither ‘imported’ nor ’“exported’ are not
accessible inside the section, and the same identifier may be used
for completely different variables inside &nd outside, Similarly,
any variable declared inside the section whose identifier is not
‘imported’ nor ‘exported’ cannot be accessed outside the section, If
an unpdeclared variable 1is created asutomatically inside a section,
then that variable only has scope within that section., Mention of an
identifier as 'imported’ or ‘exported’ autaomatically amounts to a
declaration of a variable with the specified properties (if any), if

POP -1 USER'S MANUAL version 12D{363) 3F=Apr=76 Page 28
SECTIONS

the variable has not already been declared.

The BSection Name (if any) is declared as & macro which expands
to a seguence of all the Exporteds, any exporteds which are macros
being prefixed by the word "NONMAC", The only difference between the
"importeds’ and ‘exporteds’ is that the former are not included in
the expansion of the section name. Note *that the statament

CANCEL <section names; will cause every exported of the section
(including the section name itself) to be cancelled,

No error will be caused if an identifier 1is included in the
importeds or exporteds 1lists which 1is already declared as &an
pperation or macro but is included without any property specification
in the 1list,. This permits <«<section name» to be included in the
importeds or exporteds list of another section, to make all externals
of this section importeds or exporteds of the other. Similarly, no
error is caused if an identifier is dimcluded in the importeds or
exporteds lists of a section which has already been declared, and
which has also been ‘protected’ with POPROTECT.

This change to the definition of Sections is consistent with the
examples given in the reference manual, which still work as
described,

The implementation of sectipons has been radically changed, and
the following features are now available,

If a <saved«state» is created inside & section, it saves the
complete sectien dictionary for identifiers, When the saved-state is
subsegquently reinstated, the section is re-entered,

A section may be left by compiling "ENDSECTION" or by Jjumping out
of the POPVAL with a jumpout function (or by calling SETPOP)., The
section is not cancelled when this 1is done, but only when a
subsequent garbage collection collects the dictionary after any
pointers to it {in savedstates) have been lost, When the section is
cancelled, gvery dinternal identifier of the section is cancelled,
This has two possible side-effects which can be detected
subsegquently,

If an identifier is cancelled and at that time 4its VALQOF is the
pair [WD . UNDEF] for that particular word, then the VALOF is changed
to UNDEF,

If an identifier is cancelled and at that time dits VALOF 1is a
<function>» whose FNPROPS is the list [WD] for that particular word,
then the FNPROPS is changed to NIL,

If a pointer to a <words> is held by the program and that word was
currently associated with any variable at the time it was created (by
CONBWORD or the itemiser), then VALOF will always subsequently &access
that particular variable irrespective of sections and cancellations,
That is, if (through wuse of SECTION oar UCANCEL)Y there are twao
different variables whose identifiers have the same characters, then
those variables have different word-rells associated with themselves

in core, The different word-cells with the same characters are "=",
but not "EQ".

POP =10 USER'S MANUAL version 12D(363) 30~Apr-=76 Page 29
STANDARD IDENTIFIERS
7.8 STANDARD IDENTIFIERS
7.1 POP-2 Standard Identifiers
In this section, the new and changed standard identifiers are

described, All of the standard identifiers defined in the POP-2
Reference Manusl are present, and are unchanged except for the
following (which are altered as described).

AND see "conditionals”

CHARIN

changed to use ASBCII

CHAROQUT changed to use ASCIT

CHARWORD changed to 7-bit characters, and longer words
COMPILE will accept filename or charactsr repeater
CONBWORD changed to 7-bit characters, and longer words
CUCHAROUT changed to use ASCII

DATALENGTH glso works on arrays

DATALIST also works on arrays (ses APPDATA below)
DESTWORD changed to 7-bit cheracters, and longer words
ERRFUN see Section 3.4

IF can appear at top level

INCHARITEM changed as described above

INITC changed to 7-bit components

LOOPIF can appear at top level

CPERATION operations of precedence 1 slightly changed
POPVAL null PROGLIST accepted as {GOON]

OR see "conditionals”

SECTION definition changed
SETPOP does & jumpout
S5UBSCRC changed to 7-bhit components

7.2 "Optional Functions"

The identifiers given in Appendix 2 to the
"Optional Functions” ere almost all included, with a few alterations
in detail. The following are included:

/= ARCTAN APPLIST APPLY APPDATA COPYLIST COREUSED COS
EXP FNCOMP LENGTH LIBRARY LISTREAD
PROCT REV BIN BABT TAN VALOF

Reference Manual

ERUAL
LOG NUMBERREAD PRBIN

However, there are a few changes:

COPYLIST copies a list at the top level anly,.
the same result as Le<>NIL |,

COPYLIST({L) gives

COREUSED is an operation of precedence 1 instead of an
variahle.

ordinary

VALOF is not identical to the definition
BDDk-
When VALOF is

given in the Gilver

applied o & word item, it &accesses the

POP-19 USER 'S MANUAL version 120(363) 3B=Apr=76 Page 130
STANDARD IDENTIFIERS

variable currently assopociated with that wordcell at the time
that the word-=cell was created, sven if that wvariable has
subsequently been cancelled, This ensurses that cancellation
of variables {(for instance by ENDSELCTION) will not affect the
behaviopur of programs already compiled which use VALOF.,
(Similar remarks apply to IDENTPROPS and PCPIDENTYPE.)

FNCOMP now returns a doublet if its second argument is a doublet.
The updater of F1 FNCOMP D2 will apply the function F1 and
the updater of D2, ODOtherwise, FNCOMP is unchanged,

APPDATA 1is implemented in a more efficient way than that
suggested in the "Silver Book", and it applies the function
to all components aof the data structure without first using
any memory to build a 1ist of the values,., This not anly
reduces the load on the storage allocation system, but it
also means that this funetion works for arbitarily long data
structures: there is no risk of the stack overflowing during
construction of the datalist,

APPDATA can be used in conjunctilon with DATALENGTH and
a new function DATASIZE (see helow). All of these functions,
when given an array, will operate on the strip used
internally in the array to hold the elements, APPDATA and
DATALENGTH, when applied to a closure function, will operate
on the frozen values, since the DATALIST of a closure is
defined to be & list of the frozen values, The DATALIST of
any other function (than arrays and closures) is Jjust its
FNPROPS, so APPDATA when given a function item will APPLIST
its second argument teo the FNPROPS of that function,
Aside from such ordinary functions, the DATALIST of an
item A is actually calculated gssentially as
[% APPDATA{X,IDENTFN) %]}, Thus stack overflow can occur if
vau try to form the DATALIST of a long data structure or
array ,

The following variables are not provided:
CARRYON, POPTIME
POPTIME is repleced by POPMESS-RUNTIME,

The fecilities of the library program LIB DEBUG are provided as
standard in POP-1B. There are therefore the following variables:
Macros: BUG, UNBUG
Variables: OEBPR, DEBSP, DEBUG

DE3SP is reset to @ by SETPOP and SETEDIT, and DEBUG is dinitielly
TRUE .

The DEBUG facility has been modified by inclusion of a variable
DEECHAROUT which should hold an output character consumer functian,
All debug printing is sent to the consumer in this variable, instead
of to CUCHARDOUT as previously, DEBCOHARDUT is initislised to contain
CHARDUT, but it can be assigned to, and it is not reset to CHAROUT by
SETRPOP and SETEDIT., You may, of course, assign the same new consumer
function to both of CUCHARQUT and DEBCHARJOUT,

POP-19 USER'S MANUAL
STANDARD IDENTIFIERS

7.3

The following new
in addition to those referred to above:

version 12D(363) 30=Apr-76 Page 31

New Standard Identifiers

standard identifiers are provided din POP-11,

<®, s macros for iterations

<? 7> macros for iterations

COREFREE Operation 1: returns no. of words of store free
DATASIZE Function: gives size of components of data structure
ER function: fast “="

ERASEZ function: remove two items from stack

EXPPR function: EXPPR(N,DIGITS) prints n in exponent form
FBACK function: fast non-checking BACK

FDESTPAIR function: fast non~checking DESTPAIR

FFRONT function: fast non-checking FRONT

FULLERR default TRUE: when set, SYBERR prints user stack
INABCII funmction: CHARIN but CTRL chars not translated
INTPR function: INTPR(N,DIGITS) prints n as decimal integer
TSARRAY function: TRUE if applied to <arrays>, else FALSE
ISNUMBER function: TRUE if applied to number, else FALSE
LOGXOR function: forms XO0R of 2 bitstrings, cf, LOGOR
NEGATE function: unary negation

QUTASCIT function: CHAROUT but ctrl chars not translated
POPARRPR default PR: item-printer for print-arrow
POPCOMMENTS default TRUE: if false, no "comments’ messages
POPCREP holds repeater argument of COMPILE

PORPCTIDY function: causes & garbage collection and compaction
POPCTRACE default FALSE: if set, messages at garbages, etc,
POPERRNUM general: holds number of most recent error

POPERRGOR function: calls standard error-handling routines
POPEXECUTE protected bgogolean: TRUE when st execute level
POPGETITEM function: get item from PROGLIST, no expansions
PORPIDENTYPE functian: return 18-bit type-code for <words
POPLNKWARNINGS default TRUE: set for POPMES5-LNK messages
POPPIP function: copy fraom input to ocutput streams
FPOPRDYFN function: see descriptiom of POPREADY

POPREADY function: called by by tR break

POPROTECT syntax: set identifiers as 'prutegted'

POPSETFN default IDENTFN: called during SETPOP

POPTRACE function: prints current function-calling sequence
RPOPXPLNER function: prints explanation of most recent error
SYSERR function: standard value of ERRFUN

UNLESS syntax: like IF (NOT ..)

UNTIL syntax: like LOORPIF NOT(..)

Certain other standard variahbles exist if the PED Editor
is included in the PDP-1f system: +they are documented in the PED,MEM
file, Most of them start off with the 1letters "PED", tao aveoid
difficulties with identifiers used by users’ programs, A few start
"pPOoP.."., and the one other identifier is SETEDIT. :

option

POP-1@ USER'S MANUAL version 12D(363) 39-Apr-=76 Page 32
STANDARD IDENTIFIERS

Further notes follow on some of the standard wvariables listed
above,

Iteration Macros
The text: <cegxpression> <¥ -—code- *» will cause the proaogram
«code— to be performed <cexpressions> times, E.g.:
4<*pr(1)¥s> will cause printing of " 1 1 1 17,

The text: <?7 <condition> THEN -code~ ?> will cause the program
~code- to be repeated so0 long as <condition>» evaluates to a
non-false item. &,g: <?L ,ISLINK THEN FUN{L ,DEST=>L) ?> will

cause FUN to be applied to every member of the list L.

These macros are useful bhecause Lthey permit iterations to be
concisely typed at execute level - i,e, outside functions, They
expand to fixed text as follows:

L1} * L1}

<* to :LAMBDA POPLIMIT: VARS POPCOUNT:

FORALL POPCOUNT 1 1 POPLIMIT "
"<?" to " :LAMBDA: LOOPIF "
"#5" and "?>" to " CLOSE END,APPLY; "

COMPILE may be applied either to an input character repeater
functian, or to a fillename f{(a 1list), In the latter case,
POPMESS-INSOE is used to make an input repeater. The repeater
obtained will be kept in POPCREP, which is local to COMPILE,
Similar remarks apply to PEDITFROM 4if it is present. (POPMESS-IN

s wused if the INB0OS facility was omitted from the POP-10
system,)

COREFREE and COREUSBED are both operations of precedence 1, T hey
each perform a garbage collection, and then return the number of
PDP-19 waords of core free or in use,.

DATALIST and DATALENGTH have been fixed to work sensibly when applied
to array functions (those made hy NEWARRBAY or NEWANYARRAY). They
return a list of, and the number of, all components in the array.
See description of APPDATA above,.

DATASIZE is a function which may be applied to any item, and which
returns information about the sizes of its components (if any).
If applied to a strip, it returns +the size as specified to
STRIPFNS for the strip class,., This size is @ for full strips
made by INIT, and is 7 for character strips,. DATASIZE also
returns 7 for a wordcell, since its character components are of
size 7.

DATASIZE when applied to & record returns a copy of the
specification 1list originally supplied to RECORDFNS for the
record class, Thus the datasize of a list cell is {@ 2] since
it has two full-size components.,

If DATABIZE is applied to an array, it returns the datasize for
the strip class being used in that array {(see NEWANYARBAY)., A
NEWARRAY array has DATASIZE #.

The DATASIZE of anything else is UNDEF, In general, an item has
a DATALENGTH and DATALIST, and can be ussed in APPDATA, if and

POP-1@ USER’S MANUAL version 12D{363) 30 -Apr-76 Page 33
STANDARD IDENTIFIERS

EQ

only if either its DATASIZE is not "UNDEF or 4t dis a celosure
function, (To recognise closure functions, you can use SAMEDATA,
since SAMEDATA regards closure functions as the same data class
and as different from other functions.)

is nearly equivalent to =, The difference is that words with
the same characters will sometimes not be "ER™, though they will
always be "=", EQ is faster than "=" for comparing numbers and

nan-waords,

FBACK, FFRONT and FDESTPAIR

These functions are eqguivalent to BACK, FRONT and DESTPAIR
respectively when applied to <pair»s. However, they do not check
thelr arguments, and strange results may be produced if they are
applied to non-pairs, They are somewhat faster than BACK, etc,,
but must he treated with care,. If they are applied +to numbers,
then an ILL MEM REF crash may result, This is the consequence of
attempting to access memory outside the permitted address space,

FULLERR is & boolean variable which controls printing of 4information

by BYSERR. It is initially TRUE, and causes SYSERR to print the
contents of the user stack, If set false, BSBYSERR no 1longer
prints this 1informaticon., In any case, EYGERR does not remove any
items from the user stack, except for the error number and
culprits,

OUTASCII and CHABOUT are both functions tg send an ASCII character to

the user’'s terminal, They perform identically to each other
except when applled to a contrel character (a code 1less than
8:40). QUTASCII sends all control codes to the terminal exactly
as supplied, CHARQOUT, on the other hand, translates most control
codes into "arrow’ format. For example, CHARQUT(1): will print

"#A°, CHAROUT prints all control codes in arrow format except
for the following:

<bell> <tab> <linefeedr <vt> <form> and <CR>,

Note, in particular, that CHAROUT{(p); prints t@°’, CHARDOUT 's
behaviour with control characters is the same as that of POPMESS
QUTCCT character consumers, In contrast, consumers made by

POPMESS-DUT and POPMESS~0OUTBAK behave like OUTASCIT and send all
characters as given (except #, which they ignore).

POPARRPR is an unprotected function which initially contains PR, It

should contain an item-printing function which sends characters
to CUCHAROUT, That item printer will be wused by “=>" and by
5YS5ERR when printing items,

POPCRERP is the formal parameter of the functlon COMPILE, and it will

contain the input repeater being compiled after a compiling error
in function COMPILE, To examine the rest of the file after the
point where the error was detected, type:

POPPIP (POPCREP ,CHARDUT }:
You have to do this during the break which follows the error
report, {However, if you are getting compile-time errors, it may
be more caonvenient to compile the program fraom the editor buffer

POP-1@ USER 'S MANUAL version 120(363) 30-Apr-76 Page 34
STANDARD IDENTIFIERS

with PCOMP,)

POPCTRACE 1s a boolean variable, initiaslly FALGE, It may be
assigned ta., When it is nonzero, messages are printed at garbage

collections and when the store allocation is changed,
‘{garbage nnnn]} ' is printed at a garhage collection, where "nAnn’
is the number of words of store free, in decimal, '[compacted] ’

is printed at a storage compaction. 'ITcore nnl’ is printed when
the store allocation is changed, <nn> being the &llocation in
Kwords, in decimal,

POPERRNUM normally contains the number of the most recent error (if
any), It is set by SYSERR, bu%t can be assigned to by the user.
Its value is used by POPXPLNER to select the explanation to be
printed.

FPOPERROR is & protected function to call &an error and dispatch
properly afterwards, It «calls ERRFUN (which usually contains
S8YSERR), and then enters a break if this is appropriate. Then it
returns control to the top 1level or to a higher level break,
aceording to the rules given in Section 3.4. The calling
sequence is the same as for SYSERR (g.,v.). If POPERROR is called
with zero error number, then it does not call errfun but
immediately goes on to enter a break (if needed} and then to
restart the compiler, This can be useful when building special
programs for handling errors,

POPEXECUTE is a protected boolean variable, but is only useful
inside macros at compile time, It enables the macro to detect
whether it has been gncountered idinside or outside a fFfunction
body ., It returns TRUE if the macrc is being called at "Execute
Level” -=- i,e, outside any function bodies., It returns FALSE if
the macro is inside a function,

POPGETITEM superficially resembles the function ITEMRBEAD, but it
returns a text item from PROGLIST without Macrao expansion, It
may be defined by:

FUNCTION POPBETITEM: PROGLIST.DEST->PROGLIST: END;
but is implemented more efficiently, It is actually the function
used by ITEMBREAD and the compiler to read items from PROGLIST.

There is one situation in which POPGETITEM does not return
the ditem from PROGLIST wnchanged, If the compiling dis in
Edit-mode (see section on PED-editor), then POPSETITEM will
return words already prefixed by "PED" when appropriate,

If PADGLIST is null, then POPBETITEM returns "GOON" as a
convenience when constructing argument lists for POPVAL: "GOON"
need not be provided explicitly. However, 1in this case,
POPGETITEM &lso assigns zero to PROGLIST, and it gives an error
if called while PROGLIST is zeron., This error is oprovoked, for
example by an unterminated list constant.

PORPIDENTYPRE is a system—oriented version of IDENTPROPS, It returns
the 18-bit type-code for a ward, E.g.: 8:1 is set in a general
variable; 8:2 in a variable restricted te functions, B:400800 is

POP-10 USER’S MANUAL version 12D(363) 30=Apr=76 Page 35
STANDARD IDENTIFIERS

set in protected identifiers, and O8:18800¢ in cancelled
identifiers.

POPPIP is useful for copyving from input streams to output streams,
It takes two arguments, an input specification and an output
specification., Each specification may consist of a repeater
function, A file title, or a list of repeaters and file-titles.
If the input specification is a list of files, then they are
concatenated in order given to form a single Jjoint input stream.
If the output specification is a list of files, then the input
stream 1is copied to all of them in parallel. 0On input, a file
title has “"IN" CONSed on front, and then POPMESS is applied, On
output, a file title has "QUT" CONSed on front and POPMESS is
epplied. 5o

POPPIP([A.POF].,.[B.POP})
is equivalent to
POPPIP (POPMESS({IN A,POP]}, POPMESS([OUT B.POP]}) : .
and copies the contents of A.POP intoc = new file B .FPOFP, The
function DTYPE
FUNCTION DTYPE FILE: POPPIP(FILE,CHAROUT): END;
will print the contents of a file on the terminal,

POPREADY is the function called by #R to produce a ‘ready’ break.
It way also be called directly by the user, It first saves the
state of the program being suspended (with a jumpout function),
and sets up PROGLIST to come from the terminal, Then it runs the
function POPRDYFN and finally applies POPVAL to PROGLIST,

POPRDYFN is dinitially a function which scans +the first ditems on
PROGLIST. If it sees a '?", then it applies POPXPLNER to print
an explanation of the most recent error.

If it sgees a : , then it applies POPTRACE to print the calling
sequence of POP-10 functions,

‘See Section 3.4.3 for more information.

POPRDTECT is a syntax word which is followed by identifiers
terminated by a semicolon. The identifiers will be ‘protected’.
A protected identifier may not be assigned to by VALOF, nor may
any assignments to it be compiled. However, the main advantage
of protecting an identifier comes when it dis +the name of a
function, operation or macro. If a function call is mads from a

" protected varilable, then a direct Jjump to the function is
compiled, without indirection through the variable, This makes
for faster function entry. This feature is retrospective in
effect: any previously compiled calls of functions with
protected identifiers will be changed at the next garbage
collection following the use of POPROTECT,

POPSETFN is an wnprotected variahle. It initially contains IDENTFN,
and it is applied by SETPOP after the stacks and system
work-space have been cleared, but before the compiler is entered.

POPSETFN may be changed to perform any extra re-initialisation
required in SETROP,

POP =18 USER'S MANUAL version 12D (363) 3t-Apr-76 Page 36
STANDARD IDENTIFIERS

POPVAL is changed slightly as a result of modifications to
POPGETITEM. It is no longer necessary to provide a "GOON" at the
end of the argument list,., Thus COMPILE can be defined by:

FUNCTION COMPILE POPCREPR;
POPVAL (FNTOLIST (INCHARITEM(PQPCREP)));
END;

POPXPLNER 45 a standard function to print an explanétion of amnm erraor
on the terminal., It takes the error number from POPERBNUM, which
is set by SYSERR and can also be assigned to by the user,

S5ETPOP is the standard function which restarts the compiler at the
toplevel, It proceeds as follows:
First it Jjumps out from any currently active functiogns. That 1s,
instead of simply abandoning them, as previously, it now unwinds
their local variahles,
Then it stops paper tape mode (if it is o©on), resets the teletype
prompt, and resets DEBSP, ERRFUN, CUCHAROUT and APPSTATE to their
standard values,
Next 1t applies the function POPSETEN, which 1s initially
IDENTFN,
Finally, if POPSETFN returns, it restarts the compiler at the top
level, and prints the message "setpop’.

SYSERR 1s the standard wvalue of EBRFUN - the error function,.
Normally it is called from ERRFUN by the POPERROR routine, It
takes 1 or more arguments as fopllows, The top item on the stack
iz the error code item. If the error code is a positive integer,
then the error number printed will he the remainder moduloc 1§8d,
and the quochtient <top item>/100% will be taken as the number of
culprits to print, The culprits will be taken from the stack
after the error code item, being printed in the usual “"=>" order,
The error number is assigned top POPERRBNUM,

If the error code item is not a positive integer, then it is
printed as the error description, and 3YS5ERR assumes that one
culprit is also present on the stack,

To call an error, number (say) 601, with two culprits ci1 and
c2, type:

PCPERROR(C1, C2, 2641);

See Section 3.4 for more information on erraor-hnandling in
the system.

UNLESS is a syntax word to start conditionals in place of "IF", Tt

reverses the tests applied to the conditional expressions., For
example,

UNLESE A OR B THEN .,
is eguivalent tao
IF NOT(A OR B) THEN ..

UNTIL dis & syntax word to start iterative conditionals in place or
LOORPIF, It reverses the sense of the truth-tests, and loops
until the condition goes trua,

For example:

POP-1@ USER'S MANUAL version 12D(363) 33-Apr-=76 Page 37
STANDARD IDENTIFIERS

8.0
8.1

1.

UNTIL NULL(L) THEN F(L.DEST->L) CLOSE;

will apply F to every element of the list L.

CTHER FEATURES

The functions associated with certain syntax words have been
named: this makes it easier to locate compiling errors, The
words are:
SECTION, FUNCTION, MACRO, OPERATION, LAMBDA, (, (%, [,
[%, IF, LOOPIF, UNTIL and UNLESS, .

The function POPTRACE, which prints the function calling
sequence, always ignores whichever functions are currently in
the standard variables ERRFUN and POPRDYFN, Additionally, it
ignores any function with FNPROPS = UNDEF, This reduces
unnecessary printing at errors and breaks. Gee Section 3.4.

The debugging system macro BUG replaces the wvalue of each
BUG=-ed variable with &a clesure function, BUG now copies the
FNPROPS of the original function to the new value, thus

preserving its name if printed, and allowing programs which use
the FNPROPS to work,

The functions 5P and NL apply INTOF to their argument, and use
the integer result for the count. A real argument will not
cause an error, However, 1f the argument is negative or very
large (1988 or more), then nothing is printed. NL(i);
actually prints one carriage return followed by i line-feeds,

If PR is applied to an invalid pointer, it prints "%" followed
by the 12-digit octal number of the ‘pointer’.

In the POP-2 compiler, a "." is followed by a non-operation
identifier to form a <dot aperator»>., In POP-1B, this has bean
generalised: a period may be Tollowed by a <function> item,
still forming a dot aperator, In this case, a call of the
function is compiled in the usual way, This facility will be
of wse where macros sexpand to function calls. The POP-1%
compiler, like POP-2, will not (yet) accept a <function> item

followed by & parenthesised exnression, though this also is an
obvipus extensign.

In POPMESS, a file-title and extension may be glven as <wordss
or character strips, as described 1n Part 4, Alternatively, a
filename or extension may be given as & positive integer, E.G.
B:40768B8352, In this case, the integer must be at least
B:19008006; 4i.e. its left-hand half-word wust be nonzero.

POP-18 USER 'S MANUAL version 120(363) 30-Apr-76 Page 38
OTHER FEATURES

9.

1.

This facility is provided so that UFDs can be accessed, as in:
POPMESS ([BLOCKID B:4@76800352 ,UFD]);

which accesses the UFD for [4P876.352]. This facility is

further aided by the provision (assumed in that example) that

if a file—-extension UFD is specified then the directory [1,1]

is assumed for the look-up.

In POP-1P, if the itemiser finds & string too long to handle,
then the partial string read thus far is returned as & culprit
if possible, This error commonly arises from a missing closing
string quote, and the partial string culprit mekes it easier to
find the error, If the itemiser reads <termin> while reading a
string, the partial string is similarly returned.

This system does not create & garbasge-~-staeck overflow file
unless and until it is needed, If an overflow file is used,
the POPCTRACE messages are changed from ‘[garbage nnnnl® and
‘[compacted]” te ‘[garb ov age nnnnl’ and ‘[comp ov acted}’,
The garhage file, if created, is called nnnPOP.TMP, where nnn
is +the Jjob number, This disc file is always deleted by POP-10
when vou next return to monitor level, excepting only if you
return to monitor 1level by tCtC in the middle of a garbage
collection or store compaction, The file is opened on channel
3, and PDOP«18 never uses channel 17 (since future extensions
may require it), and user I/0 is restricted to channels 1 to 16
{octal) inclusive,

In this system, the compiler reads gll text items from PROGLIST
with POPGETITEM,., This carries a speed advantage when compiling
files with COMPILE, for the system does not then go through the
full dynamic 1list solidification process to read a text item,
and the load on the storage allocation system is much reduced
because of the lower turn-over in list links. There is another
advantage in using COMPILE, because POPGBETITEM ensures that all
word items it returns are in the current dictionary: this is
automatically the case inside COMPILE, but direct use of PORVAL
on anp arbitrary list will cause POPGETITEM fto lock every word
up again in the current dictionary. Incidentally, the user can
do this laoking up himself by the instructions:
,DESTWORD ,CONSWORD ;

‘Phase’ code is executed from the accumulators, at times, in
this system, particularly in JUMPOUT, REINSTATE and APPSTATE.
This technigue has made these system operations faster,. The

garbage collector also derives wminor benefit from this
techniquae.

POP-19 USER'S MANUAL version 12D(363) 3D=-Apr=76 Page 39
OTHER FEATURES

8.2 The Optimising Compiler

The PCOP-1P compiler optimises the compiled code 4in certain
straight forward ways, The intention has been to reduce the amount
of core used, but in some cases the speed has been increased as well,

T« A wnary minus followed directly by a number compiles simply
as the negative of that number - & normal constant. This
saves time performing the negation.

2., The code for "FORALL I J K L" is gptimised when both J and K
are numbers rather than identifiers.

3. Structure constants do not use a separate refsrence, but
instead a UUD to loed the pointer on the stack, This saves
store at the expense of speed. If speed is important keep
the constant in & separate variable.

4. Positive integer constants under 8:10008000 (“"short
integers”) are not kept in a separate reference, but are
loaded onto the stack with a Uud., This is much like (3)
above,

5. A <condition> in a POP-18 conditional is optimised 1f it
consists of a single variable access, as in
'IF % then ' or "IF & or b then '
This makes a smaller faster program by avoiding a stack~load
and unloaed sach time.

6, A sequence of stack-load-unload will be optimised to
transfer the item via accumulator @, This covers variable
tp variable, X->Y: and short integer to variable 34->7: .
The special case of loading zero is contracted into a single
instruection, B->X: or FALBE->X; . Repetitive transfers
fraom the same source, as in NIL=>X: NIL->Y: or 3~3Z1;3=->7Z2:
are improved by omission of the second and subseguent 1load
instructions. These optimisations only occur so long as the
sequence of instructions is not broken by a label,.

7. A compiled call of ERASE or ERASEZ2 is optimised to a single
machine instruction to adjust the stack pointer
appropriately: this makes these function calls wvery fast,
but they no longer check for stack underflow,

8., Various other aoptimisations are now made, especially in for
Jump instructions and push/pop pairs, as implemented by
Arnold Smith, Backward Jjumps now perform thelir stack
checking by executing an in~l1line conditional skip
instruction instead of by using a UUD (Extra-code),

POP-1B USER 'S MANUAL verslon 12D0(363) 38 =-Apr-76 Page 40
OTHER FEATURES

8.3 Errfun

See also Section 3.4,

803!1

Changing ERARFUN -~

There are several different ways in which the srror system wmay
need to be changed for a special program.

1.

Sogme programs change ERRFUN locally to be a jumpout function
(or to call a Jjumpout functicon), so that controel can be
retained if an error occurs in & special caontext, If ERBRFUN
exits by a Jumpout function, then the break ecall, estc, are
completely bypassed, This can be a useful technigue for
testing conditions for which there is no direct predicate
available (for example - whether a particular file can be
written). ‘

In some programs, it is desired to have extra printing of
information when errors occur. It may be easiest to handle
this by redefining POPRDYFN as described in Section 3.4.3,
for two reasons:

1. the value of EARAFUN dis reset to SYSERR by SETRPOP and
SETEDIT, so0 special action needs to be taken to restore
the special ERRFUN after each error:

2. the less printing that is performed automatically the
better (in general) now that there is an easy way to get
extra information in those Cases_where it is needed.

In a few programs (e,g. POPLER), a whole new top-level has
te be defined separately from the normal SETPORP or SETEDRIT,
and this special top-level must be restarted after errors,
Maybe errors also nesed to print different information from
the normal SYSERR,

The best way to establish a %op level is to put into
POPSETFN a function which starts it, and then call SETPOP,
SETPOP clears the stacks, etec.,, and then calls POPSETFN
before starting the compiler. It is not necessary that
POPSETFN should return - it may be & function which calls
the compiler in its own way, or which calls an interpreter
for a different language, There are two possibilities:

" If POPSETFN is left permanently set tao its new wvalue,
then after an error, SETFOP will be called by the error
routines after ERRFUN and the break, and the system will
restart without any speclal further action being
necessary,

Note that SYSERA 1is assigned to ERARFUN by SBETPOP

POP-1@ USER 'S MANUAL version 120(363) 3B -Apr-76 Page 41
OTHER FEATURES

each time before POPSETFN is c¢alled, s0 if =&
non-standard errfun is required then it must bhe reset by
POPSETFN each time,

2. If it 1is desired to keep both BETPOFP and SETEDIT
performing their normal functions, then a variation is
possible, To start the top 1level, first temporarily
save the normal wvalue of POPSETFN, and assign to
POPSETFN the new function to establish the new top
level, The first action of the replacement POPSETFN
should be to reset the variahle POPSETFN itself tao its
usual value (probably IDENTFNY, Then it must change
ERRFUN as well, Then SETPOP is called,

ERRFUN may bhe defined in the general format:

FUNCTION ERRFUN;

<print some information, e.g. by LJSYSERR: »
.POPREADY ;
<restart the systems

END;

The system may be restarted from inside ERRFUN
gither by a special jJumpout function created when the
top level routine is sstablished, or it may be restarted
by the same trick again with POPSETFN and SETPOP,

It is popssible, of course, to use SETEDIT and
POPEDFN dinstead, in the same way, The only difference
would be that breaks will be in edit mode,

8.3.2 O0Other Remarks -

POPTRACE igneores functions with FNPROPS = UNDEF, and this .
enables "private" functions of a special system to become "invisible’
to users, This facility can be used to reduce the amount aof
relatively unintelligible output produced at an erraor.

Sometimes a user-defined ERRFUN may call JUMPOUT to make a
jumpout function, For 1instance, POPREADY calls JUMPOUT, However,
JUMPOUT may NOT be applied during ERRFUN if s stack has been extended
(errors 31, 32 and 33),

SETPOP and SETEDIT and “"readyset” unwind 1local wvariables of
functions fraom which they exit, just as a jumpout function does, The
only time this doegs not work is after repeated stack overflow on the
auxiliary stack,

PORP =10 USER'S MANUAL version 12D(363) 30 -Apr-76 Page 42
OTHER FEATURES

However, there is a slight “gap” in the definition of POP-2 - it
is also possible to leave functions without unwinding their local
variables, by using saved-states, If reinstaeting a saved-state
causes control to leave a particular function, then the locals of
that function are not unwound properly unless they are also lgcals of
the functions into which contral is being transferred, In POPLER 1.5
it has actually been necessary always to perform a Jjumpout +to the
level of the barrier before reinstating any saved-state, IT¥ POP-1E
is reimplemented with a different control structure, then this "gap”
in the definition of saved-states will be corrected,

9.8 BSTORE USED AND SPEED

FOP-1B8 runs with a shared high segment of 14 K-words, and a low
segment for each user - minimum of 3 K-words, {(These figures apply
to a system including the PED editor and most of the other options,

but excluding the LNK code which adds another 1K,) The low segment
can be reduced in size by making the stacks smaller.

2.1 8Sizes Of Data-structures
1, List Cells = 3 words each
o References — 2 words each

3, Word cells - 3+intof((c+1)/5) where c=no. of characters
plus core for the valof if any (1 list cell initially).

4, Full strips - (41+n) words for n components

5. Compnd strips -« 2+n/2 words, rounded up

&. Packed strips - 2+n/m words rounded up, where m is the
number of components which can fit intc one word , i.e,
36/size.

m companents are packed per word, left Justified, as this dis
the standard DEC=-1# byte-packing convention.

7. Recgrds - 1+m words where the components require m wards.,
Components are packed from legft to right, A full component
requires a whole word, A compnd component requires a
half-word {right or left). A packed component (size 1-35)
requires that many consequtive bits in one word and cannct
cross a word boundary.,

For example, records with the specification
[@ COMPNG # 15 2 COMPND] need 5 words each in all, and
leave unused a halfword after the first compnd component,

POP-10 USER 'S MANUAL version 12D(363) IF=Apr=76 Page 43
STORE USED AND SPEED

18,

11,

12.

13.

and a bit in the last word.

A new strip class - 21 words if a packed strip, else 13
words

A new record class - 15+15%n words where n = no. af
components
a function - add wup the number of variable references,

function and operation names, and gotos; then add 2 for
each AND, OR, then; and 1 for each ELSE ELSEIF LOOPIF and
UNTIL: aded 2 for each backward goto, and 2 for esach real
censtant, and an extre 1 for each formal parameter and
output local (these should already have been counted once)
and add 4.

a doublet -~ making a doublet from two existing functions
uses no store,.

A closure function « 3+2%n where n=no, of frozen formals,

An Array = 6+2D+strip where D=no., of dimensions, and strips=
size of strip reguired to hold all components of the array,.

3 3 o3 wd a3 oy =3 L o b
OOV WN a2 0D\ WN -

(AL IRAN AN LN
W =™

nna
B

NN
Mol eaJLN o))

W W W\
WY =

w W
Ul

(SN IR UL VL)
o~J o

)
L =Ns)

APPENDIX A

ERROR NUMBERS -

Non-char. given to text itemiser

Number too large on input

Number contains 2nd decimal point
Impermissible use of sub-ten

Mon-opetal digit in B: integer

Non=-binary digit in 2: integer

Impermissible use of %

Unexpected claosing string qguote

NUMBERREAD or LISTREAD: bad item read
Impermissible separator

Impermissible or missing closing "bracket”
Missing separator

Naon-operation after “NONOP", or operation after "."
Non-~WORD text item: WORD expected
Impermissible use of text item

Unexpected ":"

Compiling call of protected non-function identifier
Operation precedence not in range (1 - 9)
Non-INTEGER text item: INTEGER sxpected

Unexpected label

Two labels of same name in functian

Mis-use of syntax word or protected identifier
Impermissible assignment statement

assigning non-FUNCTION to restricted variable {operation?)
Type clash in variable declaration

Jump to undefined label

Missing closing word guote

Impermissible statement outside function body
CANCEL in function body, or not an identifier

User stack underflow

User stack overflow

Link stack overflow

Auxiliary stack overflow (infinite recursion?)

Tao long & string on input (missing closing quote?)
PROGLIST exhausted in compiler

Not enough store

Reguest for oversize cell

Too few results for JUMPOUT fn

Integer arithmetic overflow

Floating point overflow

ERROR NUMBERS

a1
42
43
44
45
46
a7
48
49
59
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
60
69
70
71
72
73
74
75
76
77
78
79
81
81
82
83
84
85
86
87
88
89
90
91
92

93,

Integer overflow in INTOF
Attempt to take the LOG of a non-positive number
Attempt to take the SRRT of a negative number
Mis=use of
Nan=number in arithmetic function
Floating numbers in //
Non-1integer for integer function
Multiple = in SECTION spec,
Macro has formal parameters or changes user stack
APPLYing a non-function
Using an undefined gperation
Using UPDATER of a non-function
Calling an undefined UPDATER, or compiling call of updater
of a protected function with undefined UPDATER
Non=function given when function expected
PARTAPPLY - not a list
Attempt to change UPDATER or FNPROPS of system function
Attempt to assign non-function to an FNPART or UPDATER
Obeying a JUMPDOUT function outside 1ts scope
Using an undefined MACRO
Item is not pailr or list as it should be
DESTREF or CONT: not a RBEF
WORD=function: not a WORD
Using updater of VALOF aon protected identifier
FNPROPS or UPDATER: not & function
FROZVAL or FNPART: not & closure function
FROZVAL - incorrect subscript
JUMPOUT = dncorrect resuli-count argumsnt
DATALIST, DATALENGTH or COPY: impermissible argument
Attempt to update the DATAWDRD of standard item-—-class
RECORDFNS: impermissible record-specification
Wrong item for & record destructor
Wrong item for & record doublet
Impermissible item for record component
Assigning simple item to an FNPROPS or UPDATER
Applying LENGTH to & gircular list
MAPLIST or APPLIST: not a function arg.
Dynamic list function: not 1 result

applied to non-1list
HD, TL, etc applied to NIL
STRIPFNG: i1llegal camponent size
Strip constructor - illegal length
Wrong item for strip selector
Wrong item for strip updater
strip selector - wrong subscript
strip updater - wrong subscript

illegal component for strip
CONSWORD -~ 1l1legal waord length
CONSWORD = i1llegal character
CHABRWORD -~ 1llegal subscript
NEWARBAY or NEWANYAHBRAY - i1llegal boundslist
NEWARRBAY or NEWANYARRAY: illegal bounds
NEWANYARBAY: strip function is non-function
Tllegal array subscript

Fage A-2

ERBOR NUMBERS Page A-3

g4 BOUNDEBLIST: illegal argument

95 JUMPOUT function created while a stack overflowed
36 PRASTRING: not a CBTRIP

g7 5P or NL: not a number

98 INTPR, PRRBREAL or EXPPR: bad format arg
29 INTPR, PRREAL or EXPPR;: not a number
106 POPMESS or LIBRARY: not a list

1901 POPMESS: Unknown contraol word

182 POPMESS: Bad list format

193 POPMESS or LIBRARY: Had list element
184 POPMESS -CLOSE - not an I/0 function

185 Non=char, glven to consumer
106 Using file -~ already CLOSEd
187 Hardware output error
188 Hardware input error

189 POPMESS=WIDTH = not & char, repeater, or valid width
119 POPMESS~CORE 4illegal arg
111 POPPIP - bad arg

112

113 I/0 saturation (14 channels already open)
114

11% DEV: unknawn, or wrong mode

116 Bad protection value

117 ERIPFR% Incorrect PPN

118 ERFNF% File not found

119 ERPRT% File protection viplation

1249 EAFBM% Fille being modified

121 ERANRM% RAuota exceeded, or file structure full

122 ERWLK% File structure write-locked

123 Cannot rename old file as ,BAK, new version is ,TWMP
124 POPMESS-EDIT not available

125 Attempt to edit & .BAK file

126 Hardware error during editing
127 fditor: a ., TMP file of the same name i1s open elsewhere
128 Editor: cannot rename as ,BAK, new version is .TMP

129 ERAEF% RENAWNE: file alresady exists

130 LOOKUP, RENAME or ENTER UUD: "ersatz"” error

131 BLOCKIO - 1llegal structure

132 BLOCKIO = illegal block number

133 POPMESS-GETSTS: bad argument

134 BLOCKIO = compnd item in structure

135 BLOCKIQO - hardware ogutput error

136 BLOCKID = hardware input error

137 POPMESS -MTAPE : not a tape I/0 function

138 POPMESS -MTAPE ¢ bad integer

139 POPMESS -RESTORE: not enough core, or bad file

140 11d file renamed ,BAK, but cannot find new versiaon
141 POPMESS~-DEVCHR: not an I/0 function

142 POPMESS -LENGTH: not & DSK: or DTA: file

1473 File protection violation ~ BLOCKIO output

144 File being modified - BLOCKIJ output

145 Quota exceeded, or file-structure full - BLOCKIC output
146 File-structure write-locked - BLOCKIO output

147 POPMESS: PPN illegal or bad format

ERAOR NUMBERS

148
149
15¢
151
152
153
154
155
156
157
158
159
bug)
1610
161
162

163
164
165
166
167
168

169
174
171
172
173
174
175
176
177
178
179
184
181
162
183
184
185
186

Page A-4q

POPMESS -RENAME format - no "="

POPMESS -PROMPT :
BARRIERAPPLY s

not a CSTRIP
incorrect integer

APPSTATE applied outside its barrier
REINSTATE not given a SAVED-STATE
Reinstating a SAVED-STATE oputside its harrier

POPMESS-LOCATE :

bad argument or stn, not in contact

POPMESS-GETTTY error

POPMESS:

not a char. code

POPMESS-HIBER = improper argument
Facility not implemented

Attempt to access illegal or non-existent memory

PEDWNF %
PEDIWA%
PEDIIA%

PEONDF %
PEDBNE %
PEDRGO%
PEDIMA%
PEDGFL%
PEDIGA%

PEDFBB%
PEDUNF %
PEDMMF %
PEDIBA%
PEDUAL %

POPMESS--LNK

LNK:
LNK:
LNK:
LNK:
LNK:
L.NK:

communications
Using selector during write
using updater during read
non-byte given to consumer

both stations trying to receive
too many line failures

(may be system

Window bound Not Found
Illegal Window bound Argument
Tllegal Insert Arg:
not string, word, number,
Not a Disk File in PEDIN
Buffer Not Empty in PEDITY
Reinserting Grabbed OBbBject,
Illegal Move Argument: not anm integer
Segarch Fail: item not found, position unchanged
Illegal Search Arg:
not string, word,
Filing Qad Buffer:
UNDD Fail:; nothing to undo
MM Fail; text not properly nested
Illegal BVYAL Arg: assigning non-pos,integer
butffer contents using unassigned channel

file or grabbed object

already inserted or wundone

number or function object
buffer empty, or no NAME

not an assigned TTY
mixed up

",
t
' P
" '? "
{ '
"o
% . .
w o on
. L]]
T
. e
T
= ' .
"o
? . .
e

[LW 1]

"E{;}" . .
"GoonN" ,

"Programming
"ready" break
" f f \ (1] . . .
" { " L] L] L] L]
%BPEDBNE . s
* . [] * »
*> [] L[] * L] L]

JBAK L.
LLCONT
.POP . ,
LAEENTER
 FENAME
LOET TTY
LSET TTY
LOVP .
LIMP

/= « o

< ¥
<? W .
<hiagfn>

(

NO

LG

(NO) TAPE

<bracketss>»

<CR> .+

<exportedss
<importedss>

<lgtters
<prat> .

<saved-state>

<section>
<signs ,
<subten>
<termin>
7>

L * []

Access to library
Accuracy of Numbers

*

L]

L

INDEX

. 6.
. 26
« 37
. 37
. 4.
. 28,
. 4.
] 6.

26

12, 35
33
12, 35
26

. 4 to 5

. 28
. 34,

. 7,
.« 26
. 6.
« 26

14
« 31

. 16

. 17
. 22
. 22
. 20
. 16

L] 31
L] 31
. 22
. 26

. 27
« 27
. 26
. 14
. 28
. 27
. 26
. 26
. 8,

36

26
to 27

to 32

to 32
to 32

15, 23,

to 32

38

Alphanumeric
ALT [] 4 - . . L] »
AND v & & o v s a
APPDATA . .+ « « .
APPLIST .+ .+ + + .
APBLY & 4 4 o« e
APPSTATE o + o & &
Arctan + + + o+ +
Array . s v 8 s s
ASCIT . . .

ASCITI character set .

AGSIGN . . .+ « +

BACK L] L] L] . * . »
BLANKS + o o « & &
BLOCKIO ., + &+ +
Braces .+ + « o« »
Break . + &« « «
Buffer * P . .
BUG & & « & o s &
Burstall , . . .« .
Byte consumer . .
Byte repeater ., .

CeSelbe ¢ o o o o«
CANCEL + + o« & « o
Cancel « « « o « o
Carryon
Case conversion
Changes . e e e
Changing errfun .
Changing the top 1
Character-set . e
CHABIN + & « & o« &
CHAROUT . . .+ . .
CHARWORD , , . « .
CLDSE L] |] * L] L] .
Clesure functians

CLRBFI . &+ &+ « + &
Collins e s s« »
Communications . .
COMPILE ., + .+ + .
Compiler + + o o« »
Conditionzls , ., .
Consumer . . . « .
CONSWORD v 4+ « « .
CONT & v ¢« o s & &
Control characters
Control characters
CDntrDl—C s . . *
COPYLIST & + « « &
Copyright . . .+ .
CORE & v ¢« + &« « &

identifiers

. s v ow
» L) - . L]
L[] - L[] - -
] [] [] » L]
L] L] [] * L]
L] L] L] " L]
s e e e s
* » [] L] {]
- [] . » .

L] L] []
L[] L} L] - »
[] » » [] »
. e = e
L] [] {] .]
L} . L] L] .
L] L] [] [] L]
» L] . [] []
N . L] » »
- [] [] L] L]
] - 4 - -
[] - [] L L[]
. [] R L] +*
] » [] L] "
L] - - * .
[] » [] L[] []
input , .
L[]] - L] -
L] L] {] . .

evel ., . .
* L]] L] -
L] » L] L] *
. - . L] L]
» L] * » L]
. L] L] [] *
-] » {] []
L3 L] L] -

E] L[] . L] L]
] L3 L]]]
L] L] [3 L] »
L] L] * L] E]
- - [] - L[]
. * [] - .
L3 . » . -
L3 - » -]
in output
" L[] {] . L[]
. L] * L .
L[] " Ll L] *

26
21
5r
29
29!
29
36
29
23-
4,
5
24

33
21
e,
26

9 to 18,

3
3a,
2
24
24

2
28
28
36
9
2
ag
ag

4

5r
16,
29
16
33
21
2
14
3|
38
50
15.
28
28
6,
16,
7
29
2
18

7. 29
to 380,
30

32

32

&, 15, 24, 26, 29,

22, 24

12, 17, 34

37

8 to 9,
18,

27, 29

29 to 38, 33

17, 29, 32, 36, 38
7
18

to 29

8,
33

26

33

Core-image . .+ .
COREFREE
COREUSED .+ « «
(> os T
CcPU ¢ s 4 = & u
Crashes . s+ e s
Crlf + v+ « « +
CSTRIPs , + .+
CUCHAROQUT . . e

DATALENGTH . . &
DATALISBT . « + .
DATABIZE . . « .
DATE . & 4 & &
DAY s s s s s
DEBCHARDUT . . .
DEBPR + « + ¢ &
DEBSP . v &« o &
DEBUGE .« 4 « « o
Declaration ' e
DECsystem=16 . .
DELETE . + + « &
DESTPAIR , . . .
DESTWORD
Dev " e s a4 s s
DEVCHR
Dictionary . . &
Dot—aoperator . .
Doublet . e s s

Dynamic list expansion

EChD »
EDIT ., &« & o &
Edit mpde . . .
Editor errors o

End=of=line comments

ENDBTH . « + «
Enguiries . .
EQ L] » []] . L L]
Egual . .+ + .
Erase . + «» &
ERABEZ .+ o« & 4
ERARFUN ., .
ERRDR NUMBERS
Errors « « o« « o
Errors in POP-1F
Execute level .,
EXIGBTS . &+ 4 + &
EXIT v & o & o
Exit o « o o &
EXD L T T T T)
Exponent

. L]
a .
L [
. .
[L]
. []
. L]
. .
[] L]
[-
[] .
. L]
- L]
. .
L] a
L] L]
L]]
L *
L] »
. L
. -
. .
L] .
L] .
. .
L] -
] *

L] »
- .
- .
- .
E] .
[] »
* .
. »
[] .
- []
4 4
* .
-

L] K]
- L
L] +
[] o
Al -
. »
.

L] []

3, 28

31, 32

29, 32

29

18

13

21

4

29 to 3@, 36

29 to 38, 32
29 to 38, 32
38 to 33
18
18
30
3@
30, 36
30
27
2 to 3
17
33
29
14
19
28
6, 37
22
38

21

17

34

11

6, 26
19

2

31, 323
29

39

31, 39
19, 29, 31, 34, 36 to 37, 48
A=1

1

4, 9
34

16

27

7

29

5

Exponants s o s x
EXPPR e 8 8 s o s e s
Extension .. « « « ¢ « &

FBACK » . - * . » . » -
FDESTPAIR e b 4 s woa
FERONT & & v o o & o o
FILE CONTRBOL . o v & «
File-title » « « o & & &
Filename « + o o« s o o o
Files s » @ » & & a . s
Filespec &« « o« s « s o
FLA1l o 0 & v ¢ & + o o &
FNCOMP & v 4 v « & « o 4
FNPROPS & v & & o & s »
Form .« o o o o o 8 & o
FRONT e & 8 s A s & s
FULLERR . , + & « «

GAT v o v+ « s o & o 2 &
Garhage caollector . . .
GCFAIL » . L] [] . L] - [] [3
GCtime » . . N - . . « a
GETETE & &« o o o &« o & =
GOON + v 4 & 2 & & o o &

HIBER 4 & & s & v & &

I/D] [} L] L3 L] L]
IDENTFN & & 4 & & & »
Identifiers . s s e v u
IDENTPROPS . & ¢ & & &
I
Til. MEM REF . ¢ e v v »
ITmplementation
IN » E] L] . L] . L] . . [] L]
INASCII & & 4 & & s & »
INCHARITEM .+ & o & & o &
INDEX L] L] [] . L] . - . []
Infix gperators . s e

INFORMATION AND CDNTRDL
INIT v v v & @ & v & s 4
INIT.POP & v v s 4 s s &
INITC & v &« s & & & +
Input v & & & & « o o
INPUT FROM THE TERMINAL
INSOS v os 8 st v v e a
Integers . . . s o8

INTERDATA 7/3? System Buide

INTOF C e e x e v 4 s s
INTPR v e o« 4 s & s w s
INTRODUCTION o o o « « o
ISABRAY . v & « & & o
ISNUMBER + & o « o & o«
Item repeater s s s s
Itemiser o ¢ « ¢ o & o
ITEMREAD &+ & v o o & &

- - a -

4
31
3,

3{]'
31,
31,
15
37
t4
3.
14
22
29
28,
22
33
11,

22
28,
13
18
19
12

21

5
361
4
34
7
l|3l
28
15,
9"
26,

A=5

5]
18
32
3'
29
14'
8
15.
3.
25
37
31
2
31
31
26
5'
13

14, 28, 37
33

33
33

14
ta 15

to 3§
38, 37

31, 33

34 to 35,

41

29
33
32

31
29

8, 20
35

32
26

26 to 28,

38

3B

J0B CONTROL FACILITIES .,
dUmDDUt LI T Y TR R

LG - L] 4 L L - . [] L] + -

Leaving POP-18 .,
LENGTH o o o o & » 2 +
Length o o v & & o « « »
LIB DEBUG . « & & & +
LIB: . v 4o v s v & & s
Library o 4 s e e s
LINED v & & & &« & o & »
Listread . + « & + « « «
LOCATE & 4 & « o « s + o
Log + « o o . .
Logical file . « « « « &
LOGOR & 4 & o &« ¢ 2 s &
LOGXOR & v & & « o » &

Long Identifiers
LODKUP v & & &« & + & & &
LOOPIF & « o o o ¢ o «
Lower—-case . + o+ o + o

Macro o ¢« o« ¢ o« & 5 s
Macros + ¢« + o « o o o
Max core " e+ s+ ® 2 =+ «
MTAPE . & & & ¢ & o 2 &
Mtape e s s e o s s s

NEGATE 4 & o & o 4 & 4 =
New Standard ldentifiers
NEWANYARBAY . & « + « &
NEWARBAY . « &+ « + & & &
NICEHF" - L] L] » L] L] L] L]]
NL L] . L] L] » » L] L] L) L] L]
Non-~operation identifiler
Number representations .
Numberread , + + ¢ « & «

Operating system , , . &
Operating Svstem aspects
OPERATIDN . & & 4 + & &
Operations . « « & & &« &
OPERATIONS of precedence
Optional Functions . . .
UH . [3 [] L] [] []) [] [] L] L]
OTHER FEATURES OF PCOP-10
QUT v 6 s s s s & & s
QUTASCII ., & o & v o o &
BUTBAK & v & v v « « =+ =
OUTCET & v 0 v ¢« & o « o
DutDUt .] L]] . [. L} .

Page L] [] L]] ' L] » Rl L] {]
Page-width .

Paper—-tape ., + « « & »
Path . . . « 8 . .« . .
PCOMP « s+ s v & & 8 & a
PED [] - [] [] []]] [] * -

=14

20
a,

22

16
29
30
15
15
15
29
19
29
24
31
31

16

4,

28
34
18
19
23

31
31
32
32
11
25
37

29
14

29

29
5,
37
14
31
14
14
14

22
17
22
14
34
3.

- % - =

35, 42

29

37

7. 29

to 15
33
16,
16,
35

"

[

33
33

33

PEDITFROM , .
PEDMARK ., ., .
PEDSHTERR . .
PJDB , + « « o
POP-10
POP-1# library
POP-2 . + .+
POP -2 Standard
POPARRPR , . .
POPCOMMENTS
POPCREP ., . .
Popctidy . + &
POPCTRACE ., .
POPEDIT .+ & «
POPERRBRNUM . .
POPERROR . . .
POPEXECUTE , .,
POPGETITEM . .
POPIDENTYPE .,
POPLER
POPLNKWARNINGS
POPMESS . . .
POPMEES
BLOCKIOD ., .
CLOSE . .,
CLRBFI
COMPILE
CDRE []
DATE
DAY ., .
NELETE
DEVCHRA
EDTIT
ENDETR
EXISTS
EXIT .,
GETETS
HIBER .
N . . .
INSOSE , .
LENGTH
LNK o+ . .
LAQCATE ,
LoOoKuUrP .,

- - - - 3 -
- [] - " - [- - L]

-
- ®» ® @ @& @ = =

MTAPE .
out . .
OUTBAK . .
ouTCcet . .
PEDMARK ,
PJOB . . .
POPTTON ., .
PPN . o .+ .
PPND . &

FROMPT . .
PROTECT . .
RENANE . ,
RESTART . .
PESTORE . .

- - [] -

- & & &

"« % @ w = a

LI - - - - - -

« ® ® ® @ = = =

* ® = @& @ ® & & & @&

- - - - -

- = % =

" & s e w

® - - -

= *» =

29
31,
31
17,
31
31'
17
31,
19,
31,
31,
31,
as
25-
37

16
16
21
17
18
18
18
17
19
17
19
16
29
19
20
15
15
16
18
19
6
19
15
16
16
22
19
21
19
19
21
17
17
29
29

26

19, 26
33

31 to 33
34

34, 36
31, 34,
34

34, 36,
34

31

36
38

RUNTIME , . .
SAVE L . a .
SETTTY . e
SUBTEN . s e
TIME . + . &
TTY & & & » &
TTYIN . o . .
TTYTAPE ., . .
WIDTH . . . &
POPMESS faciliti
POPMESGS ~LNK , ,
POPPIFP ., . . « .
Popplestone . .
PCGFPRADYFN . o« .+
POPREADY
POPROTECT " e e
PORPGETFN
Poptime
POPTRACE + « « .
Poptrace ., . .+ =«
POPTTON . & o .
POPVAL . o+ + «
POPXPLNER « s e
Ppi\! . . . » Ll L]
PPEND ¢ « o« « & &
PH L] L} [] .

Prbin . « « .+ .
Proct . s e e s
PROGLIST
Programmer , . .
Project . s e .
PROMPT , . + .+ «
Prompt string .

PROTECT « o o 4
Protecting ident
Protection . . .

QUDtB L] [] L) . .

R eady r e s a
Heady break . .
Readyset . « « .
Reals .+ « « o«
Record . +« «» o
HECORDFNS . & s
REENTER . .+« «
Aeference manual
BENAME , ., . .

Repeater . « + &
RESTART ., « .+ .
RESTORE
Rev . [T T S
RUNTIME ., ., « .

SAMEDATA
SAVE [] [] [] -2 L] -
Saved-states , ,

. » L]
. " L]
. . »
» L] L]
[] L L]
» * []
L [] ']
L] L] []
. L] »
25 4 .
[] . *
» k] *
L] L] []
L] L] L]
L] - L
[] L] .
. L] .
- [] L]

L] . .
] L] -
. L] L]
L] L] L]
L] []
. .
. v s
* {] -
L] L] L]
L] [Kl
» { 3 L]
L] a -
L] L] L[]
» [] L]
» [] L[]
ifiers
» » []
L] L[] L[]
s s e
. o
] L] L]
. L] -
L] L] L]
L] - L]
" s e
L] . L]
L] L] +
4 [3 *
L] L] *
- L] L]
. L] []
» L] a
* Nl []
L L] .
. v

- *

® = =@ ® 2 & ® =w = D = @

18
20
22
19
18
21
21
22
17
14
24
31,
2
12,
19,
28,
31,
30
12,
31
21
29,
12,
19,
19
19-
29
29
12,
14
14
21
14,
14,
35
14

2

3
3,

35

34, 35, 37, 49
12, 31, 35, 41
31, 35

35 to 36, 40
35, 37

34 to 36, 38
31, 34 to 36
16, 19

37

29, 34 to 35, 38

12
17

35

1w te 11, 41

3-
23
32
14
28
14,
15
28
28
29
18

33
20
az

26

17

SECTION . » . . . e L T T 1 Y * 27 tD 29

Section name , + ¢ & « 4+ « 4 « .« o+ 28

SECTIONS & v & o ¢ & + & 4 5 « « = 4, 6

Separators . v « 2 v « 4+ 2+ o« . « 26

e N ¥4

SET TTY WIDTH . 4 4 o o « « » « » 1B

SETEDIT 4 &« & &+ &« &+ & s s « » o« « B, 18 to t2, 38, 40

SETPOP v 4 4 o v o v ¢ s o « +« o o+ 7 to B, 18 te 11, 28, 22, 29 to 34,
35 to 36, 40

Setpop v ¢« v s s 0 e 0 e e 4w e a2

BETTTY v & v & 4 4 o s o + 2 s o » 22

SFD » - L] L[] L[] . [] - » L] - - + - - 15

5in A & » " r 4 4 & ¢ & » s » = . 29

SIXBIT [] - - - - L] L] L] [] L] L[] L] - [] 14

Sizes of data structures , . « « » 42

Bkpinl & & & & & ¢« 0 s w2 ox oa s s o« 21

SDS [] L] -« [] - » L[] - L] - L] L[] L] L] L] 15

] . 37

Spellings , . . . « B

Sqrt . » [} '] - » » . L] . 29

STANDARD IDENTIFIERS 4+ & « « o « « 29

Statldon .+« + ¢ &« + & ¢ & 4 19
STORE USED AND SBSPEED . .+ « & o 42
Gtring constant . + ¢« « « & & « o 19
String gquotes .+ .+ +« « v s .« s « B
String too long « « & + « « & « . 38
String-quote . . ¢« & 4 4 e« . s . 26
SErip & v v s v v s 6 e e e s e w23
STRIPFNS . » [] [] L] L] & [] L]] L] L[] L] 32
Sub-file directories ., + « &+ « « « 15
GUBECRC v & ¢ ¢ & ¢ & s & s & s « 29
SUBTEBJ [] L] [] [] [] L] L] L]] . - »] . 19
Summary of changes + + « & v s &« « 4
Suspending executiaon . + + . ¢ « o 2
GYSERB ¢ & & v & 4 o 4 o « 5 4 « » 18 to 11, 21 te 22, 31, 33 toc 34,
36, 4P

Tabh & v 4 v e s e v e e s e s . s 22

TEAN 4w ¢ 4« & o = o 5 & 5 s » + 2 29

TECD . - » [] [] . L] [] . L] * L a L] " 5
Telecommunications . &« . &« « « « = 24

TERMIMN . & 4 2 4 & o v « o o & « » 24 to 25
Terminal o ¢« 4 o « o 2 s « o « 2 « 33
TERMINAL CONTROL . . . v & o « s« « 21

The Error/Break Package .+ . « o« o 9

The Optimising Compiler .+ + « . « 39

TIME o v ¢« & = & « & % s » s« o «» o 18

Top level . & 4 & « & w « « 2 % + 5, 18, 449
TTY « A s v s 21
TTYIN s e b s s s e s e e eoaoe 21
TTYTAPE & v 4 s b 6 v s s s v s . 22

UC L] . 1] » a . L] .
UCIT~LIBP , ,

22
9

UFDS 4 4« o s o o o o « « & +« « 4 38
Unary minus . + « + & « « x 2 s « 6O, 39
UNBUGIUUQCCUUIUI'F‘BE

UNDEF . . .
UNLESS ., ., .
UNTIL . ., .
Urnwinding variables .
Uparrocw . s
Update ., . .
Upper-case .
User stack ,
Useti PO .
Useto . . .
Using POP~17

VALGF . , .
valof , ., .
Variables .

WIDTH . s u
Words . s s

[GOON] . . .

tA
tC
=
‘F
16
to
tQ
'R
t5
LAY
tw
X
t7
)

'0C

. . . L] .
. . . - »
[] L] . * (]
. . . . L]
L] . [a .
L] [} - [L]
. . L] » .
L] . - [L]

L] 1] L] .
. L] . (] .
- . . (] .
L] L) L] L .
» [] 4 L] L]
(] . . (] .

intercept

. L] " L L}
» . [L] (]
. L] . L] .

. 4 . [} -
L] - » * L]
[]) . . []
L] . . [.
- . L] [] .
. . L] -
L] » * . L
- . L] L] a
L] [- - L
* L] * L »
. . [. .
. . - .
[]
» L] [. L]
» . (] * [
. . L] L] L]
- + L2 » L]
. - . . v
» » [] L] L]
. » . [[
. . . L] *
+ L] []] .
(]
L] L] . [] [y
. . L] L] .
* . L] . L]
4 [} . [] .

facilities

28, 32, 37

7. 3%, 36

7., 3%, 36

4, 11, 36, 41
16

23

8
33
23
24
2

16, 28 to 29
29
27

17, 22
a, 26

N
0

- N
=0y

. 20

- —_—
ot
- V] ")
=N
. o

» 35

N~

=

MWNDOOCNN OS] m~)~) O
jes]
-ty
N

o o
DoMN
No JaN

~J

