36) Part 2: A Primer of Programming

6. AN EXAMPLE OF RECORD
PROCESSING—DIFFERENTIATING
AN EXPRESSION

We now present, as an example of record processing, a program for the
~formal differentiation of expressions. We consider expressions such
"~ asx2 +3x + 5 or (243 + 1) X (3x + 5), using one variable, x, and the
operations of addition, multiplication, and exponentiation to a positive
integer power. From this it should be easy to see how we could deal
with expressions involving several variables and more operations. We
do not discuss this extension but we set up the program in a general
form which permits it. Formal differentiation takes an expression e

and differentiates it to produce another expression 3—; using the rules

explained in elementary books on calculus. We recall that if e, and ey
are expressions in x and # is a constant:

e ex +e5) = (er) + AL ey) (1)
Tley X ep) =ey Lieg) +e, 2 (ep))
L () =n a1 (3) -
2oy = - @
) = ®

For example
_d 3 2
dx((Zx + 1) X (3x2 + 5))
d d
= (3x2 b 9,3 3 b (a,2
(3x2 + 5) xdx(Zx + 1)+ (243 + 1) xdx(3x + 5)

=(3x2 + 5) X 6x2 + (2x3 + 1) X 6%
Here is a suitable POP-2 program (it is followed by explanatory notes).

vars suml sumZ2 destsum operation 4 ++;

vecovdfns ("sum?”, [0 0)) —> suml —> sum2 —> destsum —>nonop ++;
vars prodl prod2 destprod operation 3 **;

recordfns ("prod", [0 0]) —> prodl —> prod2 —> destprod —> nonop **;
vars expl exp2 destexp operation 2 7T,

recovdfns ("exp”,[0 0]) —> expl —> exp2 —> destexp —>nonop 11;

function epr e; comment prints an expression;
if e. isnumber or e.isword then pr(e)
elseif e. dataword = "sum" then pv("("); epr(suml(e)); pr ("++");
’ epr(sum2(e)); pr(") ")
elseif e. dataword = "prod" then epr(prodl (e)); pr("**");
epr(prod2(e))
elseif e. dataword ="exp" then epy(expl(e)); pr(MT4); epr(exp2(e))
close
end;

of Programming

IATING

program for the
yressions such
ple, x, and the

n to a positive
we could deal
 operations. We
n in a general

1 expression e

using the rules
that if ¢, and e,

(1)
(2)

3) -

(4)
(5)

planatory notes).

| —>nonop ++;
»d —> nonop **;

>nonop TT;

nl(e)); pr("++");
n2(e)); pr(")")

py("** "),.

1) epy (exp2(e))

An Example of Record Processing (37

vars differvor;
function diff e,
if e.isnumber then 0
elseif e.isword then if ¢ = "x" then I else differrov(e) close
elseif e. dataword = "sum" then diff(suml(e)) ++ diff(sum2(e))
elseif e. dataword = "prod" then prod2(e) ** dsz(prodl (e)) ++
prodl(e) ** diff(prod2(e))
elseif e. dataword = "exp” then exp2(e) ** explle) 1T (exp2(e)-1)
else differvor(e)
close
end;
function differvov(e); nl(1); pv([diff evvor]); epv(e) end;

We start by introducing three kinds of records, sums, prods and exps,
each with two components, to represent the three ways of building
symbolic expressions: by addition, multiplication, and exponentiation.
For each we obtain two select/update function doublets, a destructor and
a constructor. We assign the constructor function not to an ordinary
variable but to one with an operation identifier with appropriate pre-
cedence. This enables us to construct symbolic expressions very
easily. For example,

vars e;
("? 4+ 1) ¥ (Mg 4+ 3K 01T 4) —> e

constructs, and assigns to e, an expression which may be pictured as

Thus, for example, dataword(e) is "prod” and suml(prodl(e)) is "x"
The function epr prints an expression

eprie);
(r ++ 1) ** (x ++ 3 *¥* £ 17 4)

The function diff differentiates an expression, first testing what kind

of expression it is, and then, if it is complex, combining the components
in the appropriate way, differentiating them where necessary, using a
recursive application of diff.

eprint (diff(e));
(I ++0) ** (1 ++ (3 *¥* 4 ** 113 ++ 0 ** 2174))

This result is correct but cumbersome. It would be nice to have it
simplified. Also it would be a good idea if expressions, like x7Tx, which
cannot be handled by the program, were rejected. We can accomplish
both these aims by using more elaborate functions for ++, **, and 77
than the simple record constructors. We could start all over again or
simply carry on assigning new values to these variables. Let us do the
latter.

38) Part 2: A Primer of Programming

vars conSsum;nonop ++ —> conssum,
function makesum el e2;
if e1 =0 then e2
elseif ¢2 = 0 then el
else conssumel, e2)
close
end;

makesum —> nonop ++;

The previous value of ++, that is, the function to construct a sum
record, has been saved in the variable conssum. The function makesum
checks for the zero case and only calls coussum to construct a sum
record if neither argument is zero. The function makesum is assigned
as the new value of ++. To follow what is going on we must carefully
distinguish between variables and the functions which are their values.
Similarly

vars consprod consexp;nonop ** —> consprod;nonop 1T —> consexp;
function makeprod el e2;
if e1 =0 or e2 =0 then 0
elseif el = 1 then e2
elseif ¢2 = 1 then el
else consprodlel, e2)
close
end;
makeprod —> nonop **;
function makeex) el e2;
if not(el = "x") or not(e2.isnumber) then differvor(el); differrov(e2)
elseif ¢2 = 0 then 1
elseif ¢2 = I then el
else consexp(el, e2)
close
end,
makeexp —> nonop T7;

More simplification could be done, for example, replacing x+x by 2x,
but this is to some extent a matter of taste, and it is rather more
difficult if we want to do things like replacing x +3x2+x by 2x+3x2,

It is worth remarking in closing that there are other ways of repre-
senting these expressions in POP-2, for example, by using arrays (see
section 17) or lists, or by making a different use of records. They may
be more advantageous in some ways, for example, brevity of program,
speed of running, or economy of store space. For example, if we are
restricting ourselves to polynomials in ¥ we could represent I+6x+5x2
by an array a with a(1) = 1,a(2) = 6 and a(3) = 5.

EXERCISES

1. Extend the differentiation program so that it deals with expressions
in several variables and differentiates with respect to any one of them.
Remember that differentiating v, by v, gives 0 unless v, and v, are

the same variable,

2. Write a function eval such that eval(e, n) is the value of the ex-
pression ¢ when "x" has the numerical value n. The expression ¢ is to
be restricted to the kind of expression accepted by the differentiation
program. Use it and the differentiation program to write a function to
differentiate a given expression % times, and tabulate the numerical
value of the result from a to b in intervals of delia.

- of Programming

ruct a sum
unction makesum
nstruct a sum
2sum is assigned
must carefully
are their values.

| —> consexp;

r(el); differvor(e2)

ing x+x by 2x,
ather more
- by 2 +3x2,

rays of repre-
sing arrays (see
cords. They may
rity of program,
nple, if we are
resent I+6x+5x2

s with expressions
any one of them.
vy-and vy are

jue of the ex-
Xpression e is to
 differentiation
ite a function to
he numerical

An Example of Record Processing (39

3. Let us use 'simple sentence' to mean any sequence of English
words except 'not', 'and', 'or' or 'implies'. We define propositional
expressions as follows:

(2) A simple sentence is a propositional expression.

(o) If p is a propositional expression so is not(p).

(c) If p, and p, are propositional expressions, so are b, and pg,
Dy 07 Dy, and py implies py.

Write a program which accepts a sequence of simple sentences and
negations of simple sentences, and is then able to produce an answer
lrue, false, or unknownr when given any propositional expression.
(Remember that by or py is true if one or both of p, and P, are true,
and p, implies Dy is true unless b, is true and p, isfalse.)

17 ARRAYS

An array is a table of items. It may be of one or more dimensions.
Whereas each of the components of a record is accessed by name, the
individual items of an array are indexed by number.

There is a standard function newarray which sets up an array with
specified dimensions and initializes the items of the array. For example,
the statement

newarvay([1 5 1 5],nonop *) —> a

sets up a square array 5 by 5 and initializes each element a(Z,), to the
product of 7 and j. Thus a looks something like this:

J
1 2 3 4 5
111 2 4 b
21 2 4 10
i 3| 3 6 12 15
4| 4 8 12 16 20
5] 5 10 15 20 25

The first parameter of newarray must be a list of integers which
alternately represent the lower and upper bounds of each dimension

of the array. The second parameter must be a function which requires
arguments, where n is the number of dimensions of the array, and
produces one result. The function is evaluated for every combination
of subscripts and the result is inserted in the generated array.

The elements of the array can be accessed and updated as follows:
a(3,4) =>

prints the contents of row 3 column 4.

—I1 —a(1, 1);

replaces the contents of row 1 column 1 with —1, The array «a is
actually a doublet—a function with an updater part.

There are a number of importé.nt advantages of removing the distinc-
tion between arrays and functions. First, all the POP-2 facilities for
handling functions can handle arrays equally well; secondly, it gives

40) Part 2: A Primer of Programming

the user a free choice of representation by rule or by table. Thus it
is more economical to represent the matrix

1 0 0 O

0o 1 0 O
0 0 1 0
0o .0 0 1

by a function:

function diag i j;

jf ; = j then 1 else O close
end

than by storage of the actual tables in the form of an array.

Consider the following function definition

function addm ml m2 ni nj;

newarray (% 1, ni, 1, nj %),1ambda ¢ j;
ml1(i, 7) + m2(i,) end)

end

The function addm adds two ni by nj matrices m1 and m2 together by
adding their corresponding elements. It will work equally well with
two-parameter functions and with two-dimensional arrays. The func-
tion addm generates a new. array, each element of which contains the
sum of the corresponding elements of the original arrays or functions.

EXERCISES ‘

1. Define a functibn to test for a winning position in noughts and
crosses (tic-tac-toe). Represent the board by an array whose elements
have as.values the words nought, cvoss,or blank.

Define a further function to place a piece in a square to achieve, if
possible, a winning position for that piece. If there is no winning posi-
tion, the other player should be blocked from winning if possible.

9. Define a function to multiply two p by p matrices M and N using
the definition MXN = L where L;p = L M;jNjp.

3. Write a function to sort the elements of a one-dimensional array
into ascending order. This can be done by going through the array
looking at each pair of elements in turn and interchanging them if

they are in the wrong order. The process is then repeated until a whole
pass through the array produces no interchanges.

18. STRIPS

Although for many purposes POP-2 arrays prove adequate, there are
situations where a more primitive system for storing information is
needed. The use of triangular arrays or arrays consisting entirely of
truth values are examples of situations where, although standard arrays
are adequate, they are inefficient or wasteful. Such special arrays can

be defined in terms of the more primitive data structures called stvips.

A strip is a one-dimensional data-structure with a fixed number of
components. As we will explain, the method of accessing the compo-
nents of a strip is different from that for an array. All the components
in a given strip must be the same size. For example, all the compo-
nents of a given strip might be full items capable of storing any POP-2

f Programming

\ble. Thus it

ray.

2 together by
ly well with
ys. The func-
 contains the
7s or functions.

ughts and
whose elements

achieve, if
» winning posi-
possible.

and N using

nsional array

1 the array

ng them if

ted until a whole

ate, there are
iformation is
ing entirely of
standard arrays
zial arrays can
es called strips.

1 number of

g the compo-
the components
1 the compo-
ring any POP-2

Strips (41

value. By a component of size # we mean one of # bits, that is, in the

range 0 to 2”~1, Conventionally size 0 means a whole machine word,

containing any integer, real, function, list, and so on. The length of a
strip is the number of components in the strip. The standard POP-2
arrays described in the previous section can be defined in terms of
strips of full items.

A strip class is a class of strips, each strip having the same component
size but not necessarily the same number of components. There are
two standard strip classes, known as full stvips and chavactev sivips.
Full strips have full items as components. The size of each component
of a character strip is six. The components of a character strip can
have any integer value in the range 0 to 63, and can thus be used to
represent alphabetic or numeric characters in internal code.

There is a standard function ixit (initiate) such that init(n) is a new
full strip with elements numbered 1 to n, all initially undefined, and a
standard function subscv (subscript) such that subscr(i, s) is the ith
element of the full strip s. For example

vars s; init(10) —> s;
13 —> subscr(3, s); subscv(3,s) =>
**13

Compare the second line with the equivalent statements for an array a
13 —> a(3); a{3) =>

The difference is that a is a function and s is a data structure. We
could define the array a thus:

function g i; subsc7 (i, s) end;
lambda x i; x —> subscv(i, s) end —> updater(a);

In fact the standard function newarray produces arrays in this sort of
way, but it can do it more economically by using the device of partial
application described in the next section.

For character strips the standard initiating and subscripting functions
are initc and subscrc.

The standard class of character strips, also called 'strings', is provided
primarily to enable one to manipulate sequences of characters. We

can read in such a sequence by enclosing the characters in string
quotes, thus

“the cal sat on the mat.™—> s;
s =>
** /the cat sat on the mat.™

The value of s is a character strip, and so if we write subscv(3, s)

we obtain the integer between 0 and 63 which represents the character
e. If nb is the integer representing the character b [see Appendix 1 of
the Reference Manual (Part 3)], we could say

nb —> subscrec(5, s); s =>
** fthe bat sat on the mat.™

A new strip class can be defined using the standard function stvipfus.
The statement

stripfns(“tstvipy 1) —> subscrt —> inilt;

defines a new strip class with component size 1, that is, 1 bit, each
component being 0 or 1. The word associated with the strip class is
“4stvip ™. A function for constructing strips of this class is assigned

42) Payt 2: A Primevr of Programming

to the variable initt (short for 'initialize t-strip') and a function for
accessing strips of the class is assigned to the variable subscrt. Thus
a strip of truth values can be constructed by the statement

nitt(30) —> x;

which constructs a stripx of 30 truth values. The 30 truth values
are initially undefined. The subscyt function can be used to place truth
values in the strip. For example, the statements

1 —> subscriid, x);
0 —> subscri@, x);

place the truth value 0 (false) in position 2 of x and the truth value 1
(true) in position 4 of x.

EXERCISES
1. Write a function to convert a list of characters to a string.

9. Write a function to concatenate two strings. Make it an operation
called <> of precedence 2. (The standard function datalength when
applied to a strip gives the number of components in it.)

3. Ifs is a strip defined for 2 = 1 to 100, create a select/update
doublet a to represent an array with elements a(i,j),i=1 to 10, and
j=1to 10. If a2(i,7) = 0 for all i<j, create an array a2 using a strip
of only 55 elements. '

19. PARTIAL APPLICATION

When a function is executed, the values of the actual parameters are
assigned to the formal parameters and the body of the function definition
executed. Paviial application enables one or more of the actual para-
meters to be assigned without executing the function. The result of
partially applying a function to one or more parameters is always a
function. This resulting function will be like the original function but
will have fewer formal parameters, This is best shown by an example,
asfollows.

The function tab defined in an earlier section requires four parameters:
a function and three integers defining the range. If a more specific
version of {ab which always tabulated up to 100 were required, we

could produce this new function by partially applying tab to 100 and
assigning the result to, say, fab1. Partial application is indicated by
using decovated paventheses (% and %) in place of the plain parentheses.
In addition, when the number of actual parameters is less than the
number of formal parameters, it is always the rightmost of the formal
parameters which are given values. Thus the statement

tab (% 100 L) —> tabl

makes fab1 a function of three parameters. The three parameters of
tab1 correspond to the first three parameters of lab. fabl could then
be called by executing, say

tabl(sqrt, 50, 10);
which would tabulate the values of v50,v60, and so on, up to v100.

Thus partial application enables us to start off by defining a very
general function with many parameters and then specialize it to obtain
one or more less general functions. Another example would be a

S r— s L . [_Erer

v of Progvamming

| a function for
ble subscvt. Thus
ement

truth values
sed to place truth

1e truth value 1

0 a string.

e it an operation
atalength when
it.)

elect/update
=1 to 10, and

2 using a strip

)arameters are

e function definition
the actual para-
The result of

rs is always a

nal function but

wn by an example,

s four parameters:
more specific
required, we

fab to 100 and

is indicated by
plain parentheses.
less than the

ost of the formal
nt

» parameters of
tabl could then

up to V100.

ning a very
alize it to obtain
would be a

Partial Application (43

function distance defined as

function distance x y u v,
sqri(—u) * (0—u) + (y—v) * (y—v))
end; ‘

If we are particularly interested in distances from Edinburgh (coordi-
nates —50, 350), London (—20, 10), and Birmingham (70, 70), we define

vars disted distlo distbi;
distance(%, —50, 350 %) —> disted; distance(%, —20, 10 %) —> distlo;
distance(%, —70, 70 %) —> distbi;

We can use these functions thus:
disted (50, —50) =>
**316.0

Since arrays are functions, partial application can be used on them. If
a is a two-dimensional array, a (% 8 %) is a one-dimensional array
consisting of the third column of a. Thus

a2,3) =>

**7

a(% 3 %) —>b;

b(3) =>

**7

8 —> b(2);

We can now see how to create a one-dimensional array from a strip;

vars s ay

nit(10) —> s; subscv(% s %) —> a;

33 —> a{3);al3) =>
**33

How can we write a general function to produce a two-dimensional
array from a strip,indexed by i =1to#n,j =1ton?
Consider first

function array2n => ag; vars s;

nitn*n) — s;.

lambda { j; subscr(r*(i—1) + j, s) end —> a;

lambda x i j; x —> subscr(n*(i—1) + j, s) end —> updater(a)
end;

if we test this by

vars a, arvay2(10) —> a;
99 —> 0(3; 4)';‘1(31 4) =>

we get an error message saying that » is undefined, so is s. That is
because we have created a doublet a for the array and this doublet is
used outside the function arvay2,which has n and s as variables. As
soon as array2(10) has been evaluated these variables are no longer
in existence, that is, their values are not accessible any more. So
when we say 99 —> a(3, 4), causing the lambda expression

lambda x i j; x —> subscr(n*(i—1) + j,s) end

to be entered withx = 99,7 = 3,and j = 4, the attempts to evaluate #
and s out of their proper context will cause an error.

How can we remedy this trouble ? We would like to attach the values
of » and s to the lambda expression so that wherever the lambda
expression goes the values of # and s are sure to go too. We do this
by making » and s into formal parameters and then partially applying

44) Part 2: A Primer of Programming

the lambda expression to the values we want them to have. What are
these values? They are the values of # and s while array2 is being
executed. Thus we write

function array2 n => a; vars s;
nitln * n) —> s;
lambda i j # s; subscr(n* (i—1) + j,s) end (% n,s %)
—> a;
lambda x i j n s;x —> subscv(e *(i—1) + j,s)end (% n,s %)
—> updater (a)
end;

When we test this it gives the correct answer.

vars a; arvay2(10) —> a;
99 —> a(3, 4); a(3, 4) =>
* *99

To sum up, the trouble occurs if a function mentions some variables
which are not formal parameters, output locals or locals (such
variables are called non-local variables), and is then called when
these variables are no longer in existence. It is remedied by making
these variables formal parameters and partially applying to their
values when the function is created, thus instead of

lambda x y; a....b.... end

lambda x ya b;...... a....b....end (% a,b %)

Instead of ,

function f x y; a....b.... end

write

function fxy a b; a....b.... end; F(% a,b %) —> f;

Similarly for any number of non-local variables.

It is important to take the precaution of 'freezing in' the non-local
variables of any function if there is any danger of the function being
used in a context where these variables are no longer available. If

you fail to do so the values taken may be those for some quite different
variables which happen to correspond to the same identifiers. Here is
another example:

function applylton n f; vars i; 1 —> i,
loop: if i=< n then f(¢); i+1 —> {; goto loop close
end;

vars ;100 —> i,
function g x; pr(x +)
end;

applylton(3, g);

The function applylton(n, f)is intended to execute f(1),f(2),...,f(n).

We expect
101 102 103
but we get
2486.

The reason is, of course, that we have used 7 as a non-local variable
in g, but when g is called in applyiion the i referred to will be the
most recent one, that is, the local variable 7 of applyIlion. Instead of
function g ... end;, we should have written vars g;lambda x i; pr(x+i)
end (% 7 %) —>g; . '

y of Progyamming ‘ Partial Application (45

have. What are Another, easier, way of avoiding this difficulty in many cases is given
vay2 is being in section 21 'Cancel and sections’.

Of course, sometimes we might intend a non-local to refer to the most
recent variable having that identifier, for example, if we had written
some functions and wanted to check them out by calling a function peep
%) every now and then to print out the values of selected variables:

function peep;if {race then [%,"peep",i,j, k %] => close end;

Similarly if we have a longish program with several functions calling
each other, the inner ones having as non-local variables some variables
which are local to functions further out, we can adopt the strategy of
nesting the function definitions inside each other thus

function f x; vars i,

functiong y;...... Touun
end;

some variables gl 1)L

als (such end

called when
2died by making
ying to their

Alternatively, since the non-local ¢ will always refer to the most
recently occurring i, we can write

function g ¥, i...
end;
function f x; vars i;

R (€2) T
end;

In the first case we cannot test g independently of f, because f is a
local to g and cannot be called outside;in the second we can, provided
—> f; we declare ¢ and give it a value.

vars ;99 —> i;
the non-local &(1),£(2),£(3) =>

f;‘?:itllgt’,‘l:elfflg Readers familiar with ALGOL 60 will see that the POP-2 way of
ne quite d.ifferent handling non-local variables is in some ways less convenient than the
t'fg H X ‘ALGOL one because, as in the applyltorn example, it can lead to mis-
ntitiers. tere 1s takes if the proper precautions are neglected. On the other hand, it
gives greater flexibility and allows one to write programs less deeply
nested, which is particularly useful for on-line debugging. It also
allows functions to be produced as the results of other functions, which
is quite impracticable with the ALGOL 60 way of handling non-locals.
This adds greatly to the power of the language. The idea of a function
which had attached to it the values of its non-local variables was
suggested by Landin (1964) who called such a function a closuve.

As another example consider the definition of a function called, say,
twice, which takes as parameter any function and produces as result
f(2), ..., fln). the same function applied twice. Thus fwice(sqvt) is a function which
computes the square root of the square root of a number, that is, the
fourth root.

The obvious but incorrect definition of fwice is

function twice f;

local variable lambda x; f(f(x)) end

 will be the end;

on. Instead of

bda x i; pr(x+) This will not work because the value of f is local to twice and will
' hence be available only during the execution of fwice. Partial

46) Part 2: A Primey of Programming

application enables us to 'freeze in' the value of f into the definition of
the lambda expression. To do this, the definition of fwice becomes

function fwice f;

lambda x f; f(f(x)) end (% f %)
end;

vars voot4;

twice(sqrvt) —> vootd; vootd (16) =>
**2.00

function addl x; x+1 end,

twice (addl) —> add2; add2(5) =>
**7

We have now used twice to produce two different functions. They are
quite independent, and the first one still works correctly.

root4(16) =>
*¥*2.,00

We cannot write twice(addl)(5) but we may write (twiceladdl))(5)or
apply (5, twice(addl)), using function apply xf; f(x) end.

If we want to examine the values of any parameters which have been
frozen into a function by partial application we can do so using the
standard function frozval, for example,

F(% 8,9 %) —> f1; frozval(l, 1) =>
**8

7 —> frozval(l, f1); frozval(l, f1) =>
**7

If we want to do the same thing inside a function we can do it most
easily by making the frozen formal parameter into a veference.
References are a standard class of records with only one component;
compare pairs which have two, they are constructed by consvefand .
accessed by cont. For example,

function counter v n; cont(v)+1 —> cont{y); cont(r)=< n end;
counter(y, consvef(0), 3 %) —> ¢;

vCyiCy CyuCy C =2

** pe, tvue, true, false, false

Again the reader acquainted with ALGOL will recognize the analogy
with various concepts of own variable. We will see in the next section
that ¢ is an example of a kind of function called a vepeater, useful for
representing such things as input files or streams.

EXERCIBES

1. Define a function sgrts to find the square roots of a list of
functions, e.g.sqrts([1 2 3]) = [1.00 1.41 1.73]. (Use maplist and
partial application.)

2. If member(x, s) is true just if x is a member of the set s (repre~
sented by a list), create a function of one argument which tests whether
the argument is a member of the set [2 3 57 11 13 17 19].

3. What is the effect of the following program ?
vars a;

function f x; x —> a end;

8 —>a;

function gx; vars a; 88 —> a; f(x+90); a => end;
g(9);

a =>

of Programming

the definition of
ce becomes

ons. They are
y.

(addl1))(5)or

ich have been
50 using the

1 do it most
fevence.

ne component;
consvef and

end;

e the analogy
he next section
itev, useful for

a list of
saplist and

 set s (repre-
ch tests whether
9].

Partial Application (47

4, (a) Write a function **, an operation of precedence 3 such that
f**g is a function % with z(x) = g(f(x)). f**g is usually called the
composition of / and g.

(b) What is the value of maplist((% s, v, z %], cos**sin)?

(c) Define & as an operation of precedence 5 and assign apply to it.
What is the value of [1 2 3] & twice(tl)**hd ?

(@) What does the function kd**nonop = (% "monkey" %) do ?

(e) If p is a predicate, i.e., p(x) is a truth value, what is p**not ?

5. Define a function maketimebomb such that maketimebomb(n) is
a function of no arguments, which has no effect the first »—1 times it
is called and prints "explode" the nth time. Write a function called
defuse which renders such a timebomb harmless.

6. Write a version of maplist whose result is a dynamic list.

200 INPUT AND OUTPUT FACILITIES

Some of the basic input and output facilities for the console have
already been mentioned in previous sections. There are, however,

further facilities for dealing with devices other than the on-line console.

The whole range of input and output facilities are described in this
section. Output facilities are described first because they are some-
what simpler.

OUTPUT FACILITIES

Standard output functions are:

=> to print the entire contents of the stack on a new
line from bottom to top leaving it empty. (Only
the top value on the stack is printed if => is used
within a function body.)

pr(x) to print the value of x.

prink(x) to print the value of x and also leave it unchanged
on the stack as a result.

nl(n) to cause further output to continue on a new line
leaving n—1 blank lines.

sp(n) to skip » spaces across the page.

chavout (v) to output the character whose internal code is »n,.

The character code is given as an appendix to the
reference manual.

prreal(x,nl,n2) to print a real quantity x in a format with #n1 places
before the decimal point and »n2 after.
prstving(x) prints a string without printing the quotes.

Using these standard output functions, the POP-2 programmer can print
results on the console in a flexible manner. Normally programs and
data will be kept in some filing system, for example, on a disc store,
and the user should consult the description of the filing system for his
installation (see, for example, the 'EASYFILE' system described in
Part 4 'Program Library'). The remainder of this section describes
the basic facilities for handling devices. Many users will not need to
know these details, relying instead on the filing system which will itself
make use of these facilities. :

INPUT FACILITIES

The following input functions are standard:

itemvead () to read one word, number or symbol, such as comma or
colon,

chavin () to read one character,

48) Part 2: A Primey of Programming

The functions chavin and itemvead are the normal way a POP-2
program reads its data from the console keyboard. For example, a
Program to read a set of integers and print their total when the word
"end" is typed could be defined as follows:

function sum;

vars x total; k0: 0 —> tolal;

kl: itemvead() —> x;

if x = "end" then pr (fotal); goto k0 close;
tolal + x —> total; goto ki

end

When the function sum is executed, it will read items typed on the key-
board. When an integer is typed it is added into the total. When the
word end is typed the total is printed and the process starts over
again. If anything other than an integer or the word end is typed,
attempting to add it to total will result in an error message, and fur- ,
ther console input will be POP-2 text rather than data read by sum. i
This is one way of terminating the otherwise infinite program. The :
other way is to hit the key on the console which interrupts the POP-2 |
program and then type setpop (), which returns the system in readiness
for program input.

REPEATERS AND CONSUMERS

There are two kinds of function, which must be introduced, to explain

the input/output mechanism of POP-2. We call them a repeater (for

input) and a consumer (for output). They are complementary in the way

that select and update functions are complementary, and indeed they ‘
can be regarded as special kinds of select and update functions |
respectively.

| _)
Nt To illustrate the idea in a familiar context consider the following i
l

L

definitions:

vars inlist outlist;
function fromlist; vars x;inlist. id —> x;inlist. {1 —> inlist; x end;
function tolist x; outlist <> [% x %] —> outlist end;

Thus fromlist() produces the next item on the inlist, and tolist(x) appends
x to the end of outlist.

[1234]— inlist;nil — outlist;
tolist(2*fromlist());
tolist @*fromlist());
tolist@*fromlist());
outlist =>

** [2 4 6]

Compare this with

pr(2*itemread());
pr (@*itemread());
\ pr(2¥itemvead());

‘ K If the input file is 1, 2, 3, the output file will be 2, 4, 6. The situations
| are strictly analogous. fromlist and itemvread are repeaters (they

repeatedly produce an item), whilst folist and p» are consumers (they

consume items).

- of Programming

a POP-2
)r example, a
- when the word

yped on the key-
tal. When the
starts over

1d is typed,
ssage, and fur-
read by sum.
rogram. The
upts the POP-2
em in readiness

ced, to explain

. vepeater (for
entary in the way
1d indeed they
functions

e following

list; x end;

d tolist(x) appends

The situations
eaters (they
onsumers (they

!

Input and Output Facilities (49

To show how they can be viewed as select-update doublets we can say

vars list; fromlist —> list; tolist —> updater(list);
[1 2 3]—> inlist;nil —> outlist;

2*list() — list();

2*list() —> list();

2*list() — list();

outlist =>

**[2 4 6]

Note. If we want to do the same with itemvead and pr a slight diffi-
culty arises.

vars console;itemvead —> console; pr —> updater(console);

would be wrong because the value of ifemread is a standard function
and the system protects it and will not allow its updater to be altered.

- However, if we partially apply no arguments into itemread we get a new

function whose updater can be assigned to.

vars console; itemread(%%) — console; pr —> updater(console);
console() —> console():

1 (Enput)
1 (output)
2 (input)
2 (output)

CHANGING THE INPUT OR OUTPUT DEVICE

There are several kinds of repeaters and consumers for input and out-
put. First they may produce either a character or an item, such as a
word or unsigned number. Secondly the source or destination may vary,
for example, it might be the console, or paper tape, or disc.

One source, normally the console, and one destination, normally the
console, are taken as standard for any implementation of POP-2. When
the user starts to use the system it compiles his program and reads
data from the standard input device. He may later cause program to
be compiled or data to be read from other devices, but there must be
some means of communication specified a priori. Likewise his results
come out on the standard output device until he decides to use some
other device.

The standard variable cucharout has, as value, a consumer for output of
characters which enables the programmer to define his own output
routines for nonstandard output. In fact all the standard output func-
tions such as pr and n! use the variable cucharout. It normally has as
its value the standard function charout for output to the console. All
that is necessary, therefore, to cause a program to output its results

to some device other than the console is to replace the current value
of cucharout with an equivalent function for the device required. The
assignment "charout —> cuchavout" can be used to restore output to the
console. This is done automatically if an error occurs.

There is a standard function popmess (short for 'pop message') which
produces as result character repeater and/or consumer functions for
devices other than the console. To cause further output to be printed

on a line printer with the heading, say,

[xyz program vesults]

we have only to execute the assignment

popmess([Ip80 xyz program vesulis|) —> cucharout;

50) Part 2: A Primer of Programming

assuming /p80 is the appropriate device name for the line printer.
The available list of device names and the layout of the arguments of
popmess may differ from one installation to another. Because devices
other than the console may be shared among several users, popmess
must first check that the line printer is not already in use before
returning with the character output function for the line printer. The
device is returned to the pool when the output file is closed by out-
putting the item Zevmin. This can be done by executing the statement

pritermin)

After this the device is again available for other users, and any attempt
to continue outputting to the line printer will result in an error.

To restore output to the console, it is not necessary to call popmess,
because the console is permanently allocated to the user. The charac-
ter output function for the console is charout and it is only necessary
to execute the assignment

charout —> cucharout
after which further output appears on the console.

Now consider how sum, defined earlier to read items and add them up,
might have been defined to process information from any input such
as paper tape or cards. Clearly the input device must be made a
parameter of sum. The definition might be written thus:

function sum i;

vars x fotal; kO: 0 —> total;

kI:i() —> x;

if x = "end” then pr(total); goto k0 close
total + x total,goto k1

end

Now when sum is called it must be given as a parameter a repeater
function to read items from the chosen device. To read from the key-
board just like the first version, it is called by executing the statement

sum (itemread)

For any other device, a function corresponding to itemread is needed.
Just as popmess gets character output functions for output devices,
it also gets character input functions for input devices. To obtain

a character input function for a paper tape

[abe data]
the following must be executed
popmess ([ptin abe datal) —> x

which makes x a character input function. Successive calls of x pro-
duce the successive characters of the paper tape file. x is not, how-
ever, a suitable argument for sum, which needs an item repeater, that
is, item-producing function, rather than a character repeater,

There is a standard function incharitem which takes a character
repeater and produces as result an item repeater. Thus the value of

incharitem (x)

is a function just like itemvead,but which reads its data from a source
other than the console keyboard. In fact itemvead could be defined as
inchavitem (charin) except that, as is explained below, itemvead always
reads from the current source of POP-2 text and not just from the
console.

Programming

> printer,
rguments of
zause devices
S, popmess

e before
rinter. The
ed by out~

e statement

nd any attempt
error.

11 popmess,
The charac-
ly necessary

add them up,
input such
made a

a repeater
rom the key-
the statement

1d is needed.
1t devices,
'0 obtain

1s of x pro-
s not, how-
epeater, that
ter.

aracter
the value of

TOom a source
e defined as
mvead always
from the

Input and Output Facilities (51

Having thus opened a paper tape file for reading, the function sum can
be called to process it by executing the statement

sum (incharitem(x))

after which the tape will be read and whenever the word "end" is
encountered, the accumulated total will be printed on the console.
Attempting to process beyond the end of the file will cause an error
message which terminates execution of sum.

EXECUTING POP-2 TEXT FROM DEVICES OTHER
THAN THE CONSOLE.

The POP-2 system normally reads and executes POP-2 text from the
console keyboard. It is convenient to be able to input and execute text
from faster devices in order to input established function definitions
and data structures. Some knowledge of the mechanism involved in
reading POP-2 text helps in the understanding of how other devices can
be used.

The standard function compile takes a character repeater as argument
and executes the sequence of characters as POP-2 text. Using compile,
all that is necessary to execute POP-2 text punched on a paper tape
file called, say, [xyz prog] would be the two statements

popmess ([)ptin xyz prog| —> x;
compile(x);

The POP-2 system takes its input from a list called proglist. Because
items are normally typed in at the console, proglist is normally defined
to be a dynamic list in which the rule for getting the next item is
actually an item-producing function such as incharitem (chavin). A
simple demonstration of this mechanism can be obtained by typing

[2 + 2 =>] <> proglist —> proglist;

which joins the list of four items [2 + 2 =>] onto the beginning of
proglist. When the assignment has been executed, the system returns
to getting its input from proglist,thus executing the statement

‘2 4+ 2 =>

and printing the result
**4

on the console.

All that is necessary to make the system accept POP-2 text from any
source is to turn the source into a list (probably a dynamic list) and
join it onto the beginning of proglist. It was shown that incharitem

(x), where x is a character input function obtained from popmess,is an
item-reading function. The standard function fnfolis{ can therefore be
used to turn it into a list ready for joining onto proglist. The standard
function compile which facilitates this could be defined as follows:

function compile x;
futolist(incharitem (x)) <> proglist — proglist
end

The function itemvead actually removes items from the head of proglist.
It follows that while a program tape is being compiled, execution of
itemread causes items to be read from the paper tape file. The paper
tape file can therefore consist of exactly the same information as

would by typed directly on the keyboard.

I

52) Payt 2: A Primer of Programming

The input mechanism described above may appear rather complex. It
does, however, provide the user with access to information being pro-
cessed by the POP-2 system. For example, it would be very easy to
execute a POP-2 program on paper tape in which occurrences of the
word function had been abbreviated by the word fn. The following would
suffice:

popmess ([ptin xyz prog]) — x;

function edit i;

vars k;i() —> k;

if 2 = "fn" then "function” else k close

end;

futolist(edit (% inchavitem(x) o)) <> proglist —> proglist;

Having opened the paper tape file and assigned the appropriate
character input function to x,an auxiliary function edit could be defined.
The function edif takes an item-reading function and produces, as
result, an item. By partially applying edif to the item-reading function
for the appropriate input device, a function results which, when called
successively, yields the successive items of the file, with editing where
appropriate. This is then in a form which can be turned into a dynamic
list by futolist and joined to the start of proglist. A somewhat different
way of editing input is given in the program 'POPEDIT' described in
the Program Library (see Part 4). It edits character repeaters rather
than item repeaters,

EXERCISES

1. Write a function to print a neat table of sgvt{x*x+y*y) for x and v
from O to 8 in steps of 1 with 3 places of decimals.

2. Write an integer repeater to produce the even integers
052’4’6’87"'

3. Write a function which takes an integer repeater and produces a
real repeater, giving the square roots of the integers.

Write one which produces an integer repeater being the sums of
successive pairs of integers.

4. Write a function priniprog to enable one to print out a program on
any device while it is being compiled. Thus typing

compile (printprog (v, c))

reads text using the character repeater » for input and also prints it
on an output device which has the character consumer c.

21, CANCEL AND SECTIONS

There are times when we wish to get rid of an identifier, perhaps
because we wish to use the same identifier for some other purpose.
We may do this by writing

cancel x;

We must distinguish between the identifier x which is cancelled and
the variable associated with this identifier, that is, the actual pigeon-
hole in the machine used to hold the value. This pigeonhole is not
destroyed and indeed any functions already compiled which refer to
it go on doing so, but we may no longer refer to it by including the
symbol x in our program. If we declare x again by vars x;a new
pigeonhole (variable) will be created quite separate from the old one.

T i o e ——— T - AR e

Progvamming Cancel and Sections (53
complex. It Thus one use of cancelling is to ensure that functions already compiled
 being pro- which use x cannot be interfered with by using x for any other purpose.
ry easy to For example,

1ces of the
llowing would

iate

ld be defined.
ces, as

ing function
hen called
diting where
o a dynamic
hat different
scribed in
iters rather

for x and y

oduces a
1s of

rogram on

prints it

‘haps
urpose.

led and
pigeon-
S not
efer to
g the
new

old one.

function sigma f n => s;vars ;0 —> s; 0 —> 4;
loop: if i=<n then f(i) +s —> s,;i + I —> {;goto loop;
end;
cancel f i#n s;
vars #;, 3 —>#u;
sigma(lambda x; xTx end, 10) =>

gives the expected sum of cubes but would have gone wrong (giving a
sum of tenth powers) if we had not cancelled n. As explained in the
section on partial application, instead of cancelling » we could have
bound in the value of #» by writing

sigma(lambda xTn; x n end (% n %), 10) =>

It may be that we just want to get rid of such an identifier (or, more
precisely, break its association with certain variables) temporarily
and revive it later. We can do this by writing part of the program as
a section.

Any identifiers declared in this section of the program then have no
connection with those used outside it, as if their names had all been
systematically changed so as to be distinct from identifiers outside.
Thus :

vars x ;1 —>x;2 —> y;
section;
vars x ;100 —> x; 200 —> y
x+y=>
**300
endsection;

X +y=>
**3

just as if it had been written

section;
vars x999 y999,;100 —> x999; 200 —> y999;
x999 + 9999 =>
**300
endsection;

A section may have a name, and we could have written
section addition;

Of course we may wish to use some functions or other data defined
in the section later on outside, that is, we might want to declare some
identifiers inside the section and then have them usable afterwards
outside. Such identifiers are called 'external identifiers'. Here is an
example : ‘

function f; end;
vars x y;1 —>x;2 —>y;
section firs! => g;vars y;3 —> y;

function %z, end;
function g 2z, ...x...y...f...h...end
endsection;

gxty) =>

54) Part 2: A Primer of Programming

g is an external identifier declared in the section named first for use
afterwards outside. Note that the function % defined in the section could
not be used outside, nor could the y in the section have any connection
with the y outside, but the x and the f used in g are the same as the
ones outside since they have not been redeclared. We can get rid of
the identifiers produced by a section such as firsf by just typing cancel
first.

If one is writing functions for inclusion in a program library so that
they may be incorporated in other people's programs, it is wise to
enclose them in a section so as to avoid any unintentional clash of
identifiers.

Bections can also be used to solve the problem associated with using
a function with non-local variables as a parameter of another function
(this problem was discussed in section 19 'Partial application'). We
simply make the definition of the function which has a function para-
meter into a separate section. Then its local identifiers cannot clash
accidentally with those used outside. Using the same example as
before, we write

section => applylton;

function applylton n f;vars i; 1 —> 14,
loop: if i =< n then f(z);i+1 —> i;goto loop close
end; '
endsection;
vars i; 100 —> i;
function g x; pr(x+1)
end;
applylton(3, g);
101 102 103

The global i which receives the value 100 is now quite distinct from
the 7 declared in applylion and we get the desired results.

22, MACROS AND POPVAL

Sometimes a particular piece of program has to be written over and
over again with only minor changes. Usually one can define a function
to effect this piece of program, making the changeable parts para-
meters. Sometimes this is undesirable, for example, if the time taken
to enter the function and exit from it would slow the program down
considerably, or it is impossible, for example, because the changeable
parts are not suitable for making into function parameters. For
example,

if dataword(x) = "complex" then
might occur frequently and although we could define
function dcomplex x; dataword(x) = "complex” end

speed might be too important to allow this. An example where it is
impossible to define a function would be if the following statement
occurred frequently:

0—>1;

loop: it i = n then; i + 1 —> i,;goto loop close

We cannot make the statements represented by into a parameter
(unless, clumsily, we make them a lambda expression with no argu-
ments).

f Progyamming

first for use

e section could
ny connection
ame as the

n get rid of

t typing cancel

rary so that
is wise to
| clash of

d with using
ther function
ation'), We
ction para-
cannot clash
mple as

tinct from

1 over and
e a function
ts para-
 time taken
am down
changeable
. For

ere it is
tement

parameter
no argu-

Macvos and Popval (55

This difficulty can be overcome by defining a macro, a means of
generating a piece of POP-2 text during compilation, possibly with
some variations. A simple example with no variation.

macro zevoxyz; macvesults((0 —> x;0 —> y;0 —> z;]) end;

From here on, whenever the identifier Zeroxyz appears in the program
it is as if 0 —>x; 0 —> ¥,0 —> z; had been written instead. Note that
the text is enclosed in list brackets and made the argument of the
standard function macresults.

In fact a macro is just a function with the curious property that it is
executed during compilation. To get some variety we may make the
macro read the word or words which follow it and, for example, place
them somewhere in the output list,

macro initxyz; vars a; .itemrvead —> g

mac'yesulzs([% a, LN n’ nxn, n;‘n’a, "n_- n, nyn’ ",
n’a, "__~ n’ nzn’ "; " o/o])
end;
initxyz 3;
X,Y,2 =>
**3 3 3

Our first example above could be handled by

macro dcomplex, vars x; .ilemvead —> X ‘
\ macresulls([dataword (] <> [x %] <> [) = "complex™])
end;

if dcomplex y then ..
Note the limitations of macros, this one would not enable us to write
if dcomplex hd(y)then

The reader may like to define a macro cycle and a macro repeat so
that we can write

cycle i = n;

vepeal i

instead of

0 —>14; .

loop: it ¢ < m then ... ;i + 1 —> i;goto loop close
or, better, instead of

loopif i < mthen ...;i + I —> i close

Just as one may occasionally want to execute program at compile
time, using a macro, one may occasionally want to compile program

at execute time. A standard function popuval is provided for this
purpose. It takes a piece of program in the form of a list, and compiles
and executes it. The list should have the special word goon (go on) as
its last item and when this is reached popval exits and the computation
continues normally. The items in the list are words, numbers, and
strings, for example,

popval([x + y => goon]); ,
popval([‘so far so good* —> status;goon));
popval(|{function f x; x*x end; f(9) => goon));

Although popwval can be used inside a function the program text is to
be thought of as if it had occurred at the outer level of the program,
not in the body of any function (but still in the current section). Any

56) Part 2: A Primey of Progvamming

variables mentioned take their most recent values however, so that
in the first example x and y might refer to local variables of the
function in which popual is applied.

Naturally if we know in advance the piece of program to which popval
is to be applied we might as well just write in that piece of program,
so that popval is most useful when this is not known until execute time,
for example, a program which asks its user to type in any arithmetic
expression as data and then compiles it as a function and numerically
integrates it for him.

If the operating system of the particular implementation allows it,a
means of interrupting program execution may be provided, for example,
by depressing a special key on the console. Any text typed in up to

the word goon will then be executed, just as if it had been the argument
of a popval statement inserted at that point in the program. This
enables us to examine the state of a program and perhaps change the
values of some variables, and then let it continue. :

EXERCISES

1. (a) Write a macro plfunciion so that writing

plfunction f x;

for any f and x is equivalent to writing

function f x;x =>

50 long as a variable pfun is set to true, otherwise equivalent

to function f x;

(You could use this as an aid to finding mistakes in a program.)-
(b) Elaborate plfunction to deal with functions with any number of
arguments. Call it pfunction.

2. Write 2 macro —>> so that

e —>>x,9, 2;

is equivalent to

e—>%% —>y;9 —> 2,

3. Use popuval to write a function to read in an arithmetic expression
in the variable x from the console and print its values for integers x
between 1 and 10.

‘ 2. JUMPOUT
s The following piece of POP-2 program is illegal.

function f x;
if x=0 then goto ervor close;

(+ 1)/x
J end;
function g y;
)+ rp13) =
goto last;
evrov: ‘zevo evvor' =>
last:

end

This mistake is that a goto statement cannot refer to a label outside
the function body in which it occurs. In this case we can obtain the

v of Programming

wever, so that
ables of the

to which popual
ece of program,
ntil execute time,
| any arithmetic
and numerically

ion allows it,a
vided, for example,
typed in up to

een the argument
gram. This

haps change the

1ivalent

program.)-

ny number of

metic expression
 for integers x

L 1abel outside
an obtain the

Jumpout (57

desired effect by using a special standard function jumpout. We write,
for example,

vars ervor;
function f x;
if x=0 then evrrov() close;
(x + 1)/x
end;

function g y; jumpoui(lambda; ‘zevo ervor® =>end, 0) — ervor;

F6)+ f13) =

end;

Thus instead of a label ervor we have a function erro7 of no arguments
and no results produced by jumpout from the function lambda;

‘zevo evvoy® =>end. In fact, error is identical to this latter function
except that, as soon as it has been executed, execution of g is termi-
nated instead of execution of f being resumed as one would normally
expect. Thus instead of the normal exit mechanism e»7or has a
special 'fire-escape' which enables it to climb out of g when it is
called (g is the function where error was created by jumpout).

The second parameter, 0, of jumpout, indicates that the function
produces no results. A case where jumpout would be applied to a
function with a result would be the successful conclusion of a search
process. For example, given a binary tree represented by a list
structure with numbers at the tips we might want to find some number
greater than » on it.

function secavch t n; vars answer;
jumpout(lambda x ;x end, 1) —> answer;
function ‘lesi ¢;
if not(atom(t)) then test(t. hd); test(t. t1) close;
if ¢ > n then answer(t) close
end;
-test(t); undef
end;
vars iree;
(1::6)::(1::4) —> tvee;
search(tvee, 3) =>
**6
search(tree, 10) =>
**undef

The note on page 279 describes a more general jump facility.

24 SOME USEFUL STANDARD
FUNCTIONS

There are a few facilities which logically would have been introduced
in earlier chapters but were omitted in order not to burden the descrip-
tion with too much detail.

BIT MANIPULATION

One sometimes wants to perform operations on patterns of bits
(binary digits 0 or 1) such as taking the logical and of two patterns,
for example, logical and (0011, 0110) = 0010, or the logical o7, for
example, logical or (0011,0110) = 0111.

Integers may be regarded as such bit-strings, the number of binary

58) Part 2: A Primer of Programming

digits allowed depending on the largest integer allowed by the imple-
: mentation. Standard functions logand, logor, and lognot are provided.
| Thus

logand(15, lognot(logand(3, 6))) =>
**13

The integers may also be written in binary or octal by prefixing 2: or
8:, thus

2:0011 =>

**3

8: 77 =>

**63

The standard function logshift allows shifting the pattern to the left
direction by plus or minus » binary places

logshift(2:0011,3) =>
**24
logshift(8:77,—2) =>
**15 ’

BOOLEAN FUNCTIONS

The symbols and and or used in conditional expressions are not
functions because they do not evaluate both their arguments. They are
better regarded as abbreviations for certain kinds of conditional
expressions. The corresponding functions are provided, as standard,
called booland and boolor. Thus, for example,

| booland(true, boolov(false, true))
has value {rue.

FNPROPS, MEANING AND IDENTPROPS

It is sometimes useful to attach some arbitrary piece of information
to a function or a word, for example, one might attach to a function the
number of parameters it requires. Standard doublets fuprops and
meaning are provided for this purpose.

3 —> fuprops (f);
Sfuprops (f) =>

**3

"noun" —> meaning ("house™"); "verb" —> meaning("lives");

There is also a standard function to find properties of an identifier or
i | syntax word, for example

! vars operation 6 i;

identprops ("I") =>
**6

identprops("then")
**syntax
DATALENGTH AND DATALIST

Standard functions are provided to find the number of components in
a strip or record and to produce a list of these components. Thus

vars characters;initc(10) —> chavacters;
datalength(chavacters) =>
**10

f Programming Some Useful Standavd Functions (59

y the imple- - If consper constructs a record

re provided.
P datalist(conspev ("smith", 31, 0)) =>
**[smith 31 0]

refixing 2: or APPENDIX TO PRIMER

ANSWERS TO EXERCISES

Note. The function next appears occasionally instead of desf. This is
a mistake since next is not a standard function in revised POP-2 (it
was previously a synonym for dest).

| to the left

are not

nts. They are
ditional

as standard,

information
a function the
vops and

'r) ;

1 identifier or

mponents in
nts. Thus

14,19HRS, 14 MAR 1970, as DRA x4
-DBA BIGSHOOT]

60) Part 2: A Primer of Programming

o L

COMMENT
THIS IS THE FIRST OF A SET OF FILES OF POP-2 TEXT WHICH ARE
THE ANSWERS TO THE EXAMPLES IN THE PRIMER. ALL THE FILES
CAN BE COMPILED: WHERE THE QUESTION ASKS YOU TO WRITE A
FUNCTION THIS FUNCTION WILL THEN BE READY TO USE: OTHER
ANSWERS ARE GIVEN AS COMMENTS,
THE ANSWERS ARE, OF COURSE, NOT UNIQUE: WE HAVE TRIED TO
MAKE THEM STRAIGHTFORWARD RATHER THAN ELFGANT OR EFFICIENT,
THEY HAVE ALL-REEN TESTED ON THE POP-2 SYSTEM AT MACHINE
INTELLIGENCE EDINBURGH, BUT NOTIFICATION OF ANY ERRORS OR
OMISSIONS WOULD RE WELCOME,
TAPES OF THESE FILFS WILL BE MADE AVAILABLE WITH THE POP-2
SOFTWARE SYSTEM,.

BRUCE ANDERSON EDINRURGH JULY 1969 ;
COMMENT
NDO EXERCISES IN SECTION 13

COMMENT

(A) (2.5%2)/(=1,5%4)=>

(B) 142#(5-3)=>

(C) SQRT(3*2 + 4+2)=>

(D) (SIN(0.13))t2 + (COS(0,13))*2 =>
(E) ARCTAN(1.5)=>

(A) 24.0
(B) 1.16
(C) 42,0

(A)) MISSING

(B) SHOULD BE () AROUND THE 0.5

(C) THE EXPONENT MUST BE AN AN INTEGER
(D) 6, IS NOT ALLOWED

H
COMMENT
VARS 73 X=>Z; Y=>X; 2->Y;

(A) +ea=11
(R) =##6,78,13

VARS TRIG;
SORT(SIN(X+A))=>TRIG:
TRIG#TRIG=>

.
A

COMMENT
14

(A) SWAPS THE VALUES OF X AND Y

(B) SWAPS THE VALUES OF THE TOP TWO ITEMS ON THE
STACK, THOUGH IF THERE ARE LESS THAN TWO ITEMS ON THE STACK AN
ERROR WILL RESULT = IT 1S CALLED STACK UNDERFLOW

VARS A R C;
=>A =>B =>C}
A,B.C;
H
COMMENT

HERE ARE TWO FUNCTINONS TO DO QUADRATIC EQUATIONS, THE SECAND i
ONE AVOIDING DOING THE SAME CALCULATION TWICE 3

FUNCTION ROOTS A B C3
(=B + SORT(8Bt2 - 4=AsC))/(2%A),
(=B = SQRT(Rt2 = 4#A%C))/(2=A)
END;

' Programming
#% DRA =»»
' WHICH ARE ;
[HE FILES !
\RITE A
. OTHER
'RIED TO 5,2
EFFICIENT,
MACHINE
“RRORS OR 5.3
THE POP-2
Y 1969 ;]
|
5.1;
|
5.2;
i
I
i
5.3;
ON THE STACK AN
OW
5.4;

THE SECOND

Some Useful Standard Functions (61)

FUNCTION ROOTS2 A B C:
VARS U V3
~B/(2%A)=>U;
(SQRT(B*2 =~ 4aAxC))/(28A) =DV
JsV,U=v
END;

COMMENT
#8144

TYPE APPLY1TON(31,PRNEWEXPR) AFTER DEFINING THE FOLLOWING
FUNCTIONS.;

FUNCTION EXPR X3
1 + X ¢« 0.5%%X12 ¢ (1/6)8X13
END;

FUNCTION PRNEWEXPR Y;
EXPR((Y-1)/10)=>
END;

COMMENT
FUNCTION ROOTS3 A B C:
VARS U V;
IF A=0 THEN -C/B,0,-C/B,0 EXIT;
812 = 4#AxC =>V; =B/(2#A)=-D>U;
IF v>=0 THEN SQRT(V)/(2#A)=>V; U+V,0,U=V,D
ELSE SQRT(~V)/(2#A)=>V; U,V,U,=V
CLOSE
END:;

COMMENT
FUNCTION ISOK N3
IF NC100 AND ERASE(N//3)=0 OR ERASE(N//4)=0 OR ERASE(N//S5)=0
THEN TRUE
ELSE FALSE
CLOSE
END:

COMMENT
FUNCTION TAX I3
IF I =< 150 THEN n
ELSEIF I =< 400 THEN (I-150)/10
ELSEIF 1 =< 600 THEN 25 + (1-400)/4
ELSE 75 + (1-600)/3
CLOSE
END:

COMMENT
FUNCTION ORDER3 X Y Z3
IF X>Y THEN Y,X=>Y =>X CLOSE;
IF Z<X THEN Z,X,Y
ELSEIF 7Z>Y THEN X,Y,2Z
ELSE X,Z,Y
CLOSE

END:

62) Part 2: A Primer of Programming

COMMENT
FUNCTION TAR2 FUN XLLO DX XHI YLO DY YHI;
VARS X Y VALUE;
XLO=>X; YLO=>Y;
COL: TF X>XHI THEN RETURN ELSF NL(1) CLOSE:;
ROW: IF Y>YHI THEN YLO=>Y; X+DX=->X; GOTO COL CLOSF;
FUN(X,Y)=>VALUE;
IF VALUE<10D THEN SP(2) ELSEIF VALUE<100 THEN SP(1) CLOSE:
PR(VALYE); SP(?):
Y+DY=>Y}
GOTO ROMW
END;

FUNCTION TIMES X Y3 X=Y END;

COMMENT TO0 USE THF FUNCTION AS ASKED IN THE QUESTION, TYPF
TAB?(TIMES,1,1,10,1,1,10);

FUNCTION ABS X;
IF X<0 THEN =X FLSE X CLOSE
END:

FUNCTION TERMS N EPSTLON;
VARS K XK SORTN3
0->K3 1->XK: SQRT(N)=>SQRTN;
LOOP: IF ARS(SQRTN-XK)=<EPSILON THEN K; RETURN CLOSE;
0.52(XK + N/XK)=>XK3

K+1l->K;
GOTO LOOP
END;
COMMENT

FUNCTION APPLYL1TON N F3
VARS INT; 1->INT;
LOOP: FCINT);
INT+1=->INT3
IF INT=<N THEN GOTO LOOP CLOSF
END:

COMMENT
NO EXERCISES IN SEGCTION 83

COMMENT

(A) oUT (20, "POUNDS")
20 POUNDS,PLFASE OUT(40,"NOLLARS");
40 DOLIARS,PLEASE

(3) «#aTRUE

FUNCTION FIRSTLFTTER WORD;
VARS N;
CHARWORD(WORD); =>N:
LOOP: IF N=1 THEN EXIT;
ERASE(); N=1->N;
GOTO LOOP
END:

FUNCTION ORDER WORD1 WORD2;
FIRSTLETTER(WORD1)=>WORND1;
FIRSTLETTER(WORD2)=>WORD2;

IF WORD1>WORD?2 THEN "AFTER"
ELSFIF WORD1=WORD? THEN "SAME"
FLSE "BEFORE"
CLOSE
NDs

m

Y OgY AMIMING

P(1) CLOSE:

N, TYPF

Some Useful Standavd Functions (63

10.13

10.3;

10.4:

COMMFENT
FUNCTION EXISTS XL P
LOOP: IF NULL(XL) THEN FALSE EXIT;
IF P(HD(XL)) THEN TRUE: RETURN
ELSE TL(XL)=>XLs GOTO LOOP
CLOSE ‘
END;

COMMENT

FUNCTION APPEND X XL3;
XLEO(XEINIL)

END;

FUNCTION DFLETE X XL=>RESULT;
NIL=>RESILT;
LOOP: IF NULL(XL) THEN EXIT;
IF NOT(HD(XL)=X) THEN APPEND(HD(XL),RESULT)=>RESULT;CLOSE;
TLAXL)=>XL}
GOTO LOOP
END;

COMMENT
FUNCTION ASSOC X XYL => Y3
VARS X1;
LOOP: IF NULL(XYL) THEN UNDEF=->Y
ELSE HD(XYL)=>X13 TL(XYL)=>XYL:
IF X1=X THEN HD(XYL)=>Y
ELSE TL(XYL)=>XYL:
GOTO LOOP
CLOSE

CLOSF
END3

FUNCTION MAKEASSOC X Y XYL => XYL1:
Xe3(YSeXYL)=D>XYLY
END;

VARS PRICE:
[FAGS 50 MILK 11 SUGAR 15 BEER 28 CARROTS 401=>PRICE:

FUNCTION COST LIST => TOTAL;

0=->TOTAL;

LOGP: IF NULL(LIST) THEN EXIT;
ASSOC(HD(LIST),PRICE)+TOTAL=>TOTAL:
LIST.TL=>LIST;

GOTO LOOP

END;

COMMFNT
FUNCTION SAME XL1 XL?3
LOOP: IF NULL(XL1) OR NULL(XL2) THEN xL1=xL2; RETURN CLOSE;
IF HD(XL1)=HDP(XL2) THEN TL(XL1)=>XL1:
TL(XL2)=>XL2: GOTO LOOP
ELSE FALSE
CLOSE

END 3

FUNCTION WANTED CRIMLIST DESCRIP:
VARS SUSPEGCTS THISONE; NIL->SUSPECTS;

LOOP: IF NULL(CRIMLIST) THEN SUSPECTS EXIT;
HD(CRIMLIST)=>THISONE; TL(CRIMLIST)=>CRIMLIST;
IF SAME(TL(TL(THISONE)),DESCRIP)

THEN (HD(TL(THISONE)))::SUSPECTS~>SUSPECTS

CLOSE
GOTO LOOP

END;

64) Part 2: A Primer of Programming

11.1

11.2

12.13

VARS CRIMINALS:

CCNAME JONES HAIR SANDY EYFS BROWN HEIGHT 65]

[NAME CRIPPEN HAIR NONE EYES GREEN HEIGHT 61]

CNAME POP HAIR VERY EYES TWO HEIGHT 69%1]

[NAME DIZ7Y HAIR SANDY EYES BLUE HEIGHT 661 :
CNAME BERT HAIR NONE EYES GREEN HEIGHT 611)->CRIMINALS;

COMMENT
FUNCTION MFMBER XX XXL3
LOOP: IF XXL.NULL THEN FALSE

ELSEIF XX=XXL.HD THEN TRUE
ELSE XXL.TL=>XXL; GOTO LOOP
CLOSE
END;

FUNCTION BTGUNEON XLL:

VARS ANSWER; NIL=>ANSWER;

LOOP: IF XLL.NULL THEN ANSWER EXIT:
ANSWFRCOXLL « HD=>ANSHER
XLL.TL=DXLL S
GOTO LOOP

END;

FUNCTION PRUNE XXL3
VARS XXL?3 NIL=>XXLZ23

LIOP: IF X¥L.NULL THEN XXL2; RETURN

ELSEIF NOT (MEMRER(XXL HD,XXL.TL))
THEN(XXL JHD) 3 EXXL2=>XXL2}
CLOSE:

XXL o TL=>XXL3
GOTO LOOP

ENDS

VARS FLIGHTLIST:

CENIN- FLIV) L1V [LOND MANCH]I MANCH LLOND EDIN]
LOND [RRIST TRUROD BRIST CTRURDO] TRURO [PARIS LIV]
PARIS [LONDII->FLIGHTLIST:

FUNCTION ASSOCFLIGHTS X;
ASSOC(X,FLIGHTLIST)
END:

FUNCTION REACHABLE PILACE CHANGES:
VARS CURRENT;
PLACE: :NIL=DCURRENT;
LOOP: PRUNF((BIGUNION(MAPLIST(CURRENT.ASSOCFLIGHTS)))<>CURRENT)
~>CURRENT;
IF CHANGES= 0 THEN CURRENT
ELSE CHANGES-1->CHANGES;

GOTO LOOP
CLOSE

ENDG

CIMMENT
TAR(LLAMBDA X; X#X = 2#X - 1 END,0,1,100);
4

H
COMMENT

FUNCTION HCF N1 N2t
IF N1<N2 THEN HCF(N2,N1)
ELSEIF ERASE(N1//N2)=0 THEN N2)
ELSE HCF(N2,ERASE(N1//N2))
CLOSF
END 3

12

12

12

Pyogramming

INALS:

})ICOCURRENT)

)
\

1

Some Useful Standard Functions

(65

12.23

12,3

12.4;

13.13

14.1;

14,2
14.3;

FUNCTION HCF?2 N1 N?;
VARS RFEM:
IF N1<N2 THEN N1,N2 =>N1->N2;
LOOP: FRASE(N1//N2)->REM:
IF REM=0 THEN N2 ELSE N2=>Nt;

CLOSE;

REM=>N2;
END 3

COMMENT
FUNCTION MAPLISTY LIST FUN;
IF LIST.NULL THEN NIt
ELSE FUN(CLIST.HN):sMAPLISTL(LIST,TL,FUN)
CLOSE
END;

COMMENT
#210,(4 3 2 1]
\

FUNCTION EXISTS XL P3
IF NULL(XL) THEN FALSE
ELSEIF P(HD(XL)) THEN TRUE
ELSE EXISTS(TL(XL),P)
CLOSE
END;

FUNCTION DFELETE X XL

GOTO ILOOP CLOSE;

IF XL.NULL THEN
ELSEIF XL.HD=X THEN

ELSF

NIL
DELETE(X,»XL.TL)
(XL.HD): :DELETE(X,XL.TL)

CLOSF
END;

COMMENT
VARS OPERATION 7 /= 3
LAMBDA LEFT RIGHT; NOT(LEFT=RIGHT) END->NONOP /=

COMMENT
FUNCTION MAKEASSOC X Y XYL => XYL1:
VARS XYLP; XYL-=D>XYLP:
LOoOP: IF XYLP,NULL THEN X:2(Y:sXYL)=>XYL1;
ELSEIF XYLP,HD=X THEN Y=>XYLP,TL.HD; XYL=>XYL1:;
ELSE XYLP,TL.TL=>XYLP; GOTO LOOP
CLOSE
END;
COMMENT
*%1,2,1,2

FUNCTION EQFRONT XL1 XL2:
COMMENT *TRUF IF XLZ2=XL1<OXL';
IF NULL(XL1) THEN XxL2,TRUE
ELSETF NULL(XL2) THEN FALSF
ELSEIF HD(XL1)=HN(XL2) THEN EQFRONT(TL(XL1),TL(XL2))
ELSE FALSE
CLOSE;
END3

FUNCTION EDIT XL OLD NEW;
VARS RFMAINS;
IF NULL(XL) THEN NIL
FLSEIF ENFRONT(OLD,XL) THEN =>REMAINS;
NEW<>EDIT(REMAINS,OLD,NEW)
ELSE (XL HD)::EDIT(XL,TL ,0LD,NEW)
CLOSF
END;

66) Part 2: A Primey of Programming

COMMENT
14.45 FUNCTION ISPRIME N
VARS DIv;: 1->D1v;
LOOP: DIVe1=>DIV;
IF ERASE(N//DIV)=0 THEN FALSE
ELSEIF DIvaDIV>N THEN TRUE
ELSE GOTO LOOP
CLOSF
END;

VARS LASTNUM LIMIT:

FUNCTION NEXTPRIME;
LOOP: LASTNUM+1->LASTNUM;
IF LASTNUMMLIMIT THEN TERMIN
FLSEIF LASTNUM.ISPRIME THEN LASTNUM
ELSE GOTO LOOP
CLOSE
EAD;

FUNCTION MAKEPRLIST M3
0=>LASTNUM;
N=SLIMIT;
FNTOLIST(NEXTPRIME)

END;

COMMFNT
1513 VARS YOF X0OF DFSTPOINT CONSPOINT V3OF V20F V10F DESTTRIANGLE
’ CONSTRIANGLE:

RECORDFNS("POINT",[0 01)=->YOF - ->X0F =->DESTPOINT =>CONSPOINT;
RECORDFNS("TRIANGLE",L0 0 01)=>V30F =>V20F <=>V10F
~>DESTTRIANGLE =>CONSTRIANGLE:;

FUNCTION DIST P1 P2:
SART((XOF(P1)=XOF(P2))t2 + (YOF(P1)=-YOF(P2))t2)
END;

FUNCTION ARS X3
IF X<0 THEN -X ELSE X CLOSE
END;

VARS OPERATION 7 ==z ;
LAMBDA A B3 ABS(2#(A=-B)/(A+B)) =<0.001 END =>NONOP ==

FUNCTION ENUILATFRAL TRIANGLE;
VARS V1 V2 Vv3;
V1OF (TRIANGLE)=>V1; V20F(TRIANGLE)=>V2; V3OF(TRIANGLF)=->V3;
ROOLAND(DIST(V1,v2)==D18T(V2,V3),DIST(V1,v?)==DIST(V1,V3))
END3

VARS PP1 PP2 PP3 PP4 TR1 TR2:
CONSPOINT(0,0)=>PP1; CONSPOINT(2,0)=>PP2;
CONSPOINT(1,SQRT(3))=>PP3; CONSPDINT(3,3)=>PP4;
COMSTRIANGLE(PP1,PP3,PP2)=>TR1;
CONSTRIANGLE(PP3,PP4,PP2)=>TR2;

COMMENT
15.2; VARS ARR TD DEP FROM CODE DESTFLIGHT CONSFLIGHT FLIGHTS €;

RECORDFNS("FLIGHTS",r0 0 0 0 0 1)->ARR =>T0 =>DEP <=>FROM =>CODE
=>DESTF HT =>CONSFLIGHT;
CONSFLIGHT=>C; L16 ¢ F

CX C(1,"EDIN",0100,"LOND",0200),
C(2,"LOND",0210,"PRIS*,0310),
C(3,"LOND",0210,"RERL",0310),
C(4,"EDIN",0030,"BERL",0150),
C(5,"RERL",0300,"MOSC"*,0500) X1-D>FLIGHTS:

16

Programming

ESTTRIANGLE
NSTRIANGLE:

>CONSPOINT;

IANGLF)=->V3;
I[ST(v1,V3))

LIGHTS C;

=>FROM =>CODE
T =>CONSFLIGHT:

Some Useful Standavd Functions (67

FUNCTION GETFROM P1 T1 P2 T2 FLIGHTLIST;
VARS FLIST GF FHD; FLIGHTLIST=>FLIST;
IF P1=P2 AND T1CT2 THEN NIL EXIT;
LOOP: IF FLIST.NULL THEN “FAIL"™ EXIT3
FLIST.NEXT=)>FLIST ~>FHD;
IF FHD.FROM=P1 AND FHD.DEP>T1
THEN GETFROM(FHD,.TO,FHD.ARR,P2,T2,FLIGHTLIST)=>GF;
IF NOT(GF="FAIL") THEN (FHD,CODE)::GF; RETURN

CLOSE
CLOSE
GOTO LOOP
END;
COMMENT

16«15 FUNCTION MEMBER XX XXL3
IF XXL.NULL THEN FALSE
ELSEIF XX=XXL.HD THEN TRUE
ELSE MEMBER(XX,»XXL.TL)
CLOSE
END;

VARS VARLIST: rX Y Z1=>VARLIST;

FUNCTION PDIFF E VAR:
[F E.ISNUMBER THEN 0
ELSEIF E.ISWORD THEN IF E=VAR THEN 1
ELSEIF MEMBER(E,VARLIST)
THEN O
ELSE DIFFERROR(E)
CLOSE
ELSEIF E,DATAWORD=“SUM"
THEN PDIFF(SUML(E),VAR)++PDIFF(SUM2(E),VAR)
ELSEIF E.DATAWORD="PROD"
THEN PROD2(E)#aPDIFF (PROD1(E),VAR)
++ PROD1(F)»#PDIFF(PROD2(E),VAR)
ELSEIF E.DATAWORD="EXP*"
THEN EXP2(F)#*#EXPL(E)++(EXP2(E)=1)»sPDIFF (EXP1(E),VAR)
CLOSE
END:

FUNCTION MAKEEXP2 E1 E23
IF NOT(E2,ISNUMBER) THEN DIFFERROR(E2)
ELSEIF E2=0 THEN 1
FLSEIF E2=1 THEN E1t
ELSE CONSEXP(E1,€E2)
CLOSE

END;

MAKEEXP2=->NONOP *1t;

COMMENT
16.2%+ FUNCTION EVAL E N3
IF E.ISNUMBER THEN E
ELSEIF E. ="X" THEN N
ELSEIF E.DATAWORD="SUM"
THEN EVAL(SUML(E)sN)+EVAL(SUM2(E),N)
FLSEIF E.DATAWORD="PROD"
THEN EVAL(PROD1(E),N)#EVAL(PROD2(E),N)
ELSEIF E.DATAWORD="EXP"
THEN EVAL(EXP1(E)N)*EXP2(E)
CLOSE

END;

68)) Part 2: A Primer of Programming

16.33

FUNCTION TABKDIFF £ K A B DELTA;

LOOP1: IF K>0 THEN DIFF(F)=>E;
K=1=->K;
GOTO LOOP1
CLOSE;
LOOP2: IF A=<B THEN NL(1); PR(A):
SP(5); PR(EVAL(E,A));
A+DELTA=>A3
GOTO LOOP2
CLOSE
END;
COMMENT

VARS SENTLIST; NIL=->SENTLIST;

FUNCTION NOTT SENT:
"FA678LSE": :SENT
END;

FUNCTION ADDSENT SENT;
IF SENT . HD="FA67BLSE"
THEN (SENT,TL::FALSE)::SENTLIST~>SENTLIST;
FLSE (SENT::TRUE)::SENTLIST=>SENTLIST
CLOSF
END;

FUNCTION LOOKUP SENT LIST EQFN;
IF LTIST.NULL THEN UNDEF
ELSEIF EQFN(SENT,LIST.HD,FRONT) THEN LIST.HD.BACK
ELSE LOOKUP(SENT,LIST,.TL,EDFN)
CLOSE
END;

FUNCTION LISTEQ L1 L2;
IF L1.NULL AND L2.NULL THEN TRUE
ELSEIF L1.NULL OR L2,NULL THEN FALSE
ELSEIF L1,HD=L2,HD THEN LISTEQ(L1.TL,L2.TL)
ELSE FALSE
CLOSE
END;

FUNCTION TVALOF SENT;
LOOKUP (SENT,SENTLIST,LISTEQ)
END;

VARS P20R P10R DESTOR OPERATION 2 ORF;

RECORDFNS("OR",LD 0J)->P20R ~->P10R ->DESTOR =>NONOP ORF;

VARS P2AND P1AND DESTAND OPERATION 2 ANDF;

RECORDFNS("AND*, [0 01)~>P2AND =>PL1AND ->DESTAND =->NONOP ANDF;
VARS P2IMP P1IMP DESTIMP "OPERATION 1 IMPF;

RECORDFNS("IMP",[0 0J)=>P2IMP =>P1IMP =>DESTIMP =>NONOP IMPF;
VARS PINOT DESTNOT OPERATION 3 NOTF;
RECORDFNS("NOT*,[01)=->P1NOT =>DESTNOT ->NONOP NOTF;

FUNCTION ORFUN P1 P2;
IF P1=TRUE OR P2=TRUE THEN TRUE
ELSEIF P1=FALSE AND P2=FALSE THEN FALSE

ELSE UNDEF
CLOSE
END;
FUNCTION ANDFUN P1 P2;
[F P1=TRUE AND P2=TRUE THEN TRUE

ELSEIF P1=FALSE OR P2=FALSE THEN FALSE
ELSE UNDEF

CLOSE
END;

‘ :

f Programming Some Useful Standard Functions (69

FUNCTION NOTFUN P1;
IF P1=UNDEF THEN UNDEF
ELSE NOT(P1)
CLOSE
END;

FUNCTION IMPFUN P1 P2; ;
ORF(NOTF(P1),P2) %
END;

FUNCTION TvaAL P;
IF P.DATAWORND="PAIR" THEN TVALOF(P) }
FLSEIF P,DATAWORD="NOT" i
THEN NOTFUN(TVAL(PINOT(P)))
FLSEIF P.DATAWORD="OR")
THEN ORFUN(TVAL(PL1OR(P)),TVAL(P20R(P)))
ELSEIF P.DATAWORD="AND®
THEN ANDFUNCTVAL(P1AND(P)),TVAL(P2AND(P)))
ELSEIF P.DATAWORD="IMP" :
THEN IMPFUN(TVAL(PLIMP(P)),TVAL(P2IMP(P)))
CLOSF
END;

COMMENT ‘

17.1 THE FUNCTIONS ASKED FOR ARE ISWIN AND PLAY: |
FUNCTION LINE 1 DI J DJ BOARD FUN;

VARS S1 S2 S$3; |
ROARD(I,J)=>S1; ;
ROARD(I¢N],J+DJ)=>S2; |

3ACK ROARD(1+2#D1, J+2eDJ)=>S3; 3
ENT,LIST,TL,EQFN) FUN(S1,S2,53); ‘
END;

FUNCTION APPLINES RUARD FUN;
VARS ROW COL X3
1->R0W;
ROWS: IF LINF(ROW,0,1,1,30ARD,FUN) THEN =>X;
[XROW,X%) RETURN

ELSEIF ROW<3 THEN ROW+1=>ROW; GOTO ROWS |
CLOSE: I
1->COL: |
CILS: TF LINF(1,1,C0L,0,30ARD,FUN) THEN =>X; |
[%X,COLX) RETURN {
FLSEIF COL<3 THEN COL+1->COL; GOTO COLS *
CLOSE;
DIAGS: IF LINE(1,1,1,1,80ARD,FUN) THEN =>X: CXX,XX1 RETURN
ELSEIF LINE(3,=1,1,1,R0ARD,FUN) THEN =>X; [% 4-X,X %] RETURN

INOP ORF; ELSE FALSE
CLOSE

~>NONOP ANDF; END;
=>NONOP IMPF; FUNCTION WIN S1 S2 S3;

IF S1=S2 AND S?=S3 AND NOT(S1z="BLANK") THEN S1,TRUE
TF 3 ELSE FALSE

CLOSE

END;

FINCTION GOOD S1 S2 S3 CHAR; }
IF S1=CHAR AND S2zCHAR AND S3="BLANK" THEN 3,TRUF
ELSEIF S1=CHAR AND S2="BLANK" AND S3=CHAR THEN 2,TRUE
FLSEIF S1="BLANK" AND S2=CHAR AND S3=CHAR THEN t,TRUE
ELSE FALSE
CLOSF
END;

FUNCTION GDODO S1 S? S3;
GOOD(S1,52,53, "NOUGHT") ;
END;

Part 2: A Primer of Programming

FUNCTION GNODX S1 S2 S33
f00D(S1,52,53,"CRUSS");
END;

FUNCTION 0GOOD BOARD:
APPLINES(BOARD,GOODO)
END;

FUNCTION XG00D BDARD:
APPLINFES(BOARD,GOODX)
END;

FUNCTION BLINE S1 S2 S3;
IF S1="BLANK" THEN 1,TRUE
ELSEIF S?2="HLANK" THEN 2,TRUF
FLSETF S3="BLANK" THEN 3,TRUE
ELSE FALSFE
CLOSE
END;

FUNCTION BLANK BDARD:
APPLINES(BOARD,BL INE)
END;

FUNCTION ISWIN BOARD:
VARS ANSWER;
APPLINES(BDARD,WIN)=>ANSWER;

IF NOT(ANSWER=FALSF) THEN IF ANSWER.HD,ISNUMRER

THEN ANSWER.TL,HD
ELSE ANSWER.HD
CLOSE;
ELSE FALSF
CLOSE
END;

-FUNCTION PRN SQUARE;

IF SQUARE="CROSS" THEN PR("X")
ELSEIF SQUARE="BLANK" THEN PR("."%)
ELSEIF SQUARE="NOUGHT" THEN PR("0%)

CLQOSE

END;

FUNCTION DISPLAY BOARD;
VARS ROW COL; 1->ROW; 1->COL:
NL(1);
LOOP: PRN(ROARD(ROW,COL));
IFf COL<3 THEN COL+1=->COL: GOTO LOOP
ELSEIF ROW=3 THEN NL(1)
ELSE 1=>COL; ROW+1=->ROW;
NL(1); GOTO LOOP
CLOSE;
END;

FUNCTION NEWROARD:;
NEWARRAY([1 3 1 31,LAMBDA I J; "BLANK" END);
END;

17

17

18‘

18'

Some Useful Standard Functions (71

LY amming

FUNCTION PLAY ROARD;
VARS IS 0G XG BL:
ISWINCROARD)=>IS;
IF NOT(IS=zFALSE) THEN (IS::CHAS WON1)=> EXIT;
0GOON(ROARD)->0G;
IF NOT(OG=FALSF) THEN “NOUGHT"~>BOARD(OG,HD,0G.TL.HD);
DISPLAY (BOARD);
L I HAVE WON1=> EXIT:
XGOOD(BOARD)->XG;
IF NOT(XG=FALSF) THEN “NOUGHT"=->BOARD(XG.HD,XG.TL.HD):
NDISPLAY(BOARD):
L YOUR TURNI=> EXIT;
BLANK (KOARD)=>RL;
IF NOT(BL=FALSF) THEN "NOUGHT"=>BOARND(BL.HD,BL.TL.HD);
NISPLAY(ROARD):
[YOUR TURNI=> EXIT;
[ITS A DRAWI=>
END;

COMMENT
17.23 FUNCTION ELEMENT | K M N P;
VARS SUM U3 0->SUM; 1->J;
LOOP: M(I1,J)#N(J,K) + SUM =>SUM;
IF J=P THEN SUM
ELSF J+1=>J; GOTO LOOP
CLOSE
END;

FUNCTION MULTARR M N P; '
NEWARRAY((% 1,P,1,P %1,LAMRDA I K;ELEMENT(I,K,M,N,P) END);
END;

COMMENT
17,35 FUNCTION ORDER INTARR SIZE;
VARS CHANGES N3
PASS: 0=>CHANGES: 1->N:
THRU: IF INTARR(N)>INTARR(N+1)
THEN INTARR(N), INTARR(N+1)=>INTARR(N) ~>INTARR(N+1):
CHANGES+1->CHANGES;
CLOSE;
N+1=>N?
IF NCSIZE THEN GOTO THRU
FLSEIF CHANGES>0 THEN GOTO PASS
CLOSE

ENN;

COMMENTI
18413 FUNCTION CHLSTRING CHLS;
VARS N STRING;
INITC(LENGTH(CHLS))=>STRING;
1=>N;
LODP: IF NULL(CHLS) THEN STRING EXIT
CHLS .NEXT=>CHLS=>SUBSCRC(N,STRING);
N+1=>N3;
GOTO LODOP
END;

COMMENT
18.,2: FUNCTION COPYS S1 S2 N;
VARS J L1
NATALENGTH(S1)~->L1:;
1=>43
LJOP: SURSCRC(.J.S1) => SUBSCRC(J+N,S2);
If O = L1 THEN EXIT
J+1=>J3
ROTO LOOP
END;

72)

Part 2: A Primer of Programming

18.33

19.13

19.2;

19.3

FUNCTION JOIN S1 S§2;
VARS S12;
INITC(DATALENGTH(S1)+DATALENGTH(S2))=->S12;
COPYS(S1,512,0);
COPYS(S2,S12,DATALENGTH(S1))
S12

END3

VARS OPERATION 2 <=>:
JOIN=>NONOP <=>;

COMMENT
VARS S §7;
INIT(100)->S;

FUNCTION A 1 J3
SUBSCR(I+10#(J=1),5)
END

LAMBDA X 1 J3
X=>SUBSCR(I+10%(J=1),S)
END->UPDATER(A)Y;

INIT(55)->52}

VARS OPERATION 5 ///:
LAMBDA AN BN; AN//BN=>AN->BN; AN; END->NONOP ///3

FUNCTION A2 1 U3
IF I<J THEN O
ELSE SUBSCR(I+10#(J=1)=-J*(JU~1)///2,52);
CLOSE
END;

LAMBDA . X I J;
IF I<J THEN "ERROR"=> RETURN
ELSE X=>SUBSCR(I+108(J=1)=-J%(J=1)///2,582);
CLOSE
END =>UPDATER(A2);

COMMENT
VARS SORTS;:
MAPLIST(%SARTX)~>SORTS;

COMMFNT
FUNCTION MEMBER XX XXL3
IF XXL.NULL THEN FALSE
ELSEIF XX=XXL.HD THEN TRUE
ELSE MEMBER(XX,»XXL.TL)
CLOSF
END;

VARS MEMLODD;
MEMBER(XL 2 3 5 7 11 13 17 19)%)~>MEMLODD;

COMMENT
% 99
*a 8

COMMENT

19.,4A;FUNCTION FUNPROD F Gt

LAMBDA X F1 G153 G1(F1(X)) END(%F,GX%)
END;

f Progvamming

/1//3

2) 3

2,52)

Some Useful Standard Functions (73

19.48

19,4C

19.4D

19.4E

L9.63

20.1¢

VARS OPERATION 3 #a;
FUNPROD=>NONOP #»;

COMMENT
CX SIN(COS(S)),SIN(COS(Y)),SIN(CDOS(Z)) %1 ;

COMMENT

THE ANSWER IS HD(TLA(TL(C1 2 32))) 1.E. 33
VARS OPERATION 4 &:

APPLY=>NONOP &;

FUNCTION TWICE F3;
LAMBDA X F3 F(F(X)) END(%F%)
END;

COMMENT
YIELNS TRUE IF THE HEAD OF ITS ARGUMENT IS “MONKEY"

COMMENT
ANOTHER PREDICATF;

COMMENT
FUNCTION MAKETIMEBOMR N;
VARS BOMR;
LAMBDA ZFRO TIME FUSE SELF;
IF TIME=ZERO AND FUSE=“"SET"
THEN NL(6)3; PR("EXPLODE"); NL(6)
CLOSF3;
TIME+1=>FROZVAL(2,SELF)
FND(%N,1,"SET",UNDEF%)->ROMB;
ROMB=>FROZVAL (4,80MB);
ROMB
END;

FUNCTION DEFUSE ABOMR;
"UNSET"=>FROZVAL (3,AROMB)
END;

COMMENT
FUNCTION MAPLIST2 LIST FN;
VARS BILL:
LAMBDA LIST1 FN1 SELF:
IF NULL(LIST1) THEN TERMIN
ELSE FNL1(LIST1.HD);
LIST1.TL=>FROZVAL(1,SELF)
CLOSE
END(%LIST,FN,UNDEF¥%)=->RILL:
BILL=->FROZVAL(3,RILL);
FNTOLIST(BILL)
END;

COMMENT
VARS PRL; PRINTRL(%2,3%)=->PRL;

FUNCTION PLINE X EXPR;
VARS Y:
SP(1); PR(X); SP(2);
LOOP: PRL(EXPR(X,Y)):
IF Y<6 THEN Y+1=>Y; GOTO LOOP
ELSE NL(1);
CLOSF
END;

74) Part 2: A Primer of Programming

FUNCTION PROB FXPR:
VARS X: 1->X:
NL(4); SP(2); PR("e"); PR("Y"); SP(2); PR(N);
LO0P1: SP(R); PR(X);
IF X<8 THEN X+1->X; GOTO LOOP1
ELSE NL(1): SP(2); PR("X"); NL(1);
CLOSE;
0=>X3
LDOP2: PLINE(X,EXPR):
IF X<8 THEN X+1->X; GOTO LOOP2
FLSE NL(4);
CLOSE;

END;

PROB(XLAMBNA X Y;SART(X#X + YaY) ENDX)=>PRO8;

COMMENT
20.2; VARS EVENREP:
LAMBDA N:
N+2->FROZVAL(1,EVENREP);
N
END(%0%)=>EVFNREP;

COMMENT
20.3; FUNCTION SQRTREP INTREP;
LAMBDA INTREP1;
SQRTCINTREP1(¢));
END(%XINTREP%)
END;

FUNCTINN SUMREP INTREP;
LAMBDA INTREP1;
INTREP1() + INTREP1()
END(YINTREP%)
END;

COMMENT
20.4; FUNCTION PRINTPROG R C:
‘LAMBRA R1 C1;
VARS HELLOJIM;
RICI=D>HELLOJIM:
C1(HFLLOJIM);
HELLOJIM
END(%R,C%)
END;

COMMENT
NJ EXERCISES IN SECTIONM 21;

COMMENT
22.1; VARS PFUN; TRUF->PFUN;

MACRO P1FUNCTION:

VARS FNNAME VARNAME;

IF PFUN,NOT THEN MACRESULTS(IFUNCTION]T) EXIT:

ITEMREAD()=>FNNAME;

ITEMREAD()=>VARNAME;

FRASF(ITEMREAD());

MACRESULTS

(% "FUNCTlON“.FNNAMEnVARNANE;":".VARNAME:”=)" x1);
END;

" Programming Some Useful Standavrd Functions (75

MACRO PFUNCTION:
VARS FNNAME THIS FIRST SECOND;
) IF PFUN,NOT THEN MACRESULTS([FUNCTION]) EXIT;
NIL=>SECOND;
% "FUNCTION®, ITEMREAD() %1=>FIRST;
1y; LOOP: ITEMREAD()->THIS;
1F THIS=";
y THEN MACRESULTS(FIRSTC>[:1<>SECOND) RETURN
CLOSF;
FIRSTCO[% THIS %X1->FIRST:
SECONDC>C% THIS,"=>" %1->SECOND;
GOTO LOOP
END;

COMMENT
22.2% MACRO ->>;

VARS X Y Z;

' ITEMREAD()=>X3
FRASF (ITEMREAD());
ITEMREAD()=>Y;
FRASE(ITEMREAD());
ITEMREAD()=>7; .
MACRESULTS(LY "=>", X, ":", X, "=D",Y,";",Y,"=>",7 %1)

END;
COMMENT
22.3; FUNCTION EVALUATE;
VARS EX X;

LISTREAD()=DEX;
EX<>[; GOONI=D>EX;
NLC(1); SP(1); PR("X"); SP(5); PR(“EXPR"): NL(1);
1=>X3
LO0OP: PR(X); SP(5):PR(POPVAL(EX)); NL(1):
IF X<10 THEN X+1->X; GOTO LOOP CLOSE
i END)
1

COMMENT
NO EXERCISES IN SECTION 23;

COMMENT
! NQ EXERCISFES IN SECTION 243

=>*" X1);

