PART 4. POP-2 PROGRAMLIBRARY

INTRODUCTION

This part of the book contains a selection of programs from the POP-2

library of the Edinburgh 4100 installation. The programs have mostly

been run successfully on other POP-2 implementations. They were

written in POP-2 as defined in the POP-2 Papers and have been

altered to conform to the minor changes introduced in this revised

manual. Since the POP-2 compiler had not been amended to conform

to the revisions the alterations could not be checked on the machine,

but any oversights will be easy to correct. The changes that had to be

made were

(1) vecordfns and stvipfns have only 2 arguments not 3

(2) next was previously allowed as a synonym for dest.

(3) The syntax word function is no longer allowed in a declaration after
vars.

The section facility available in revised POP-2 has not been used but

it would be advantageous to enclose these programs each in its own

section.

For a complete list of the changes see Appendix to the Reference Manual
in Part 3.

The ICL 4100 POP-2 timesharing system outputs a colon when it is
waiting for a message from the console user. Thus lines beginning with
a colon in the examples of program use are lines typed by the user
rather than by the machine.

Diamond brackets have sometimes been used in the program descrip-
tions to denote a syntax class, as in the Reference Manual. Thus when
instructed to type 'vars identifier;' you must type 'vars identifier;' but
for 'vars (identifier);' you may type 'vars x;' or 'vars y;' etc.

The amount of store used is given in 'blocks'. One block is 512 words
of 24 bits.

It is hoped that the library programs will be useful and also give some
insight into programming techniques in POP-2.

123

124) Pari 4: Progvam Library

Progrvam Name, LIB ALLSORT
Source, D.J.S.Pullin, D. B. Anderson, DMIP; Date of issue. December
1968.

TDescviption. This program will sort the elements of a list into the
order specified by the user. When supplied with a suitable predicate,
a list containing items of any type can be sorted. There is a function
provided which can be used to sort a list of words into dictionary
order.

THow to use progvam. The program should be compiled by typing:
COMPILE(LIBRARY(|LIB ALLSORT M

The function ALLSORT takes two arguments, a list, and a function
which determines the order into which the list is to be sorted, and
produces as its result, the ordered list.

f.e. ALLSORT eLIST, FUNCTION => LIST.
where FUNCTION eITEM1, ITEM2 => TRUTHVALUE.

The function argument, FUNCTION, must return the result TRUE if
ITEML is to be before ITEM2, otherwise it must return the result
FALSE,

For example, the function:
FUNCTION BEFORE X Y;

IF X<Y THEN TRUE ELSE FALSE CLOSE
END;

will cause a list of numbers to be sorted into ascending order:
ALLSORT([9 0 37 6 9 8], BEFORE) =>
**[03617899)],

It should be apparent that the function BEFORE is, in actual fact, just
the function NONOPx, so, similarly, we could order the list into
descending order by:

ALLSORT([90 3 7 6 9 8], NONOP>) =>
**[99 876 3 0],

A function ALFER is provided which can be used to sort lists of words
into dictionary order:

ALFERe WORD, WORD => TRUTHVALUE.
e.g. ALLSORT(|AN ABLAUT IS NOT ABLE TO ACCOMPANY Al],
ALFER) =>
**[A ABLAUT ABLE'ACCOMPANY AN IS NOT TO],

It may be convenient to the user to use partial application with
ALLSORT, in the following way, for example,

ALLSORT(% NONOP<%) —> NUMSORT,;

NUMSORT([7 2 9 15 1]) =>

**[12 79 15],

TMethod used. An algorithm due to C. A. Hoare is used. A random
element of the list is chosen, and the list is partitioned into three
parts—those elements before, equal to, and after the chosen element,
This procedure is now applied to these three lists, and so on, until
the list is sorted. ‘

The expected number of comparisons is 1.4 logon for a list of n
elements.

ogram Library

sue. December

list into the
le predicate,
is a function
ctionary

by typing:

function
rted, and

. TRUE if
e result

der:

1 fact, just
into

sts of words
Y A],

yith

random
three
lement.
, until

of n

LIBALLSORT (125

TGlobal variables. HIGSEED HIGPIG QQHIGPIG ALLSORT LISTIFY
PRIOR ALFER.

TPevformance. The average time taken to sort a list of 1000 random
numbers is 25 seconds,

REFERENCES
Hoare, C. A.R. (1961) Algorithms 63 and 64. Comm. Ass. comput, Mach.,
4,321,

Hibbard, T.N.(1963) An empirical study of minimal storage sorting.
Comm. Ass, comput, Mach., 6, 207, '

Scowen, R. 8. (1965) Algorithm 271 (quickersort). Comm. Ass., comput,
Mach., 8, 669.

Blair, C.R. (1965) Certification of algorithm 271, Comm. Ass, comput,
Mach., 9, 354,

Boothroyd, J.(1967) Algorithms 25, 26, 27. Computer Journal, 10,308,

126) Part 4: Program Library

CALLSORT]
VARS HIGSEED; 10->HIGSEED;

FUNCTION QQHIGPIG L
L3 INTOF(LAMBDA;
(125#HIGSEED+1)//16384; .ERASE->HIGSEED;HIGSEED/16384;
END.APPLY#LENGTH(L))=>L3;

LOOP:IF L THEN L=-1=>L;.TL;GOTO LOOP CLOSE:;
.HD3
END

FUNCTION NCJOIN X Y;VARS Z;
IF X.NULL THEN Y EXIT:;

X3

LOOP:TL(X)=>Z;1F Z.NULL THEN Y=>TL(X) EXIT;
Z->X;GOTO LOOP;
END

FUNCTION ALLSORT LIST ALFER;
VARS Y Z A GGV QQW QQS: 03
LOOP:IF LIST.NULL OR LIST.TL.NULL THEN GOTO SPLIT CLOSE;
NIL=>QQS;NIL=->Y;NIL->Z3
LIST.QQHIGPIG->QQH;
Li: DEST(LIST)->LIST=->Q0QV;
IF ALFER(QQW,QQV) THEN QQV::Z->Z:
ELSEIF ALFER(QQV,QQW) THEN QQV::0QS->0QS;

ELSE QQv::y=->Y;
CLOSE:

IF LEST.NULL THEN Z; Y; 1; Q0S->LIST; GOTO LOOP CLOSE; GOTO L1;
SPLIT: =>A; IF A=0 THEN LIST EXIT; =>Y3

IF A=g THEN ->Z; LIST,Y.NCJOIN; 2; Z->LIST: GOTO LOOP CLOSE;

YoLIST.NCJOIN-D>LIST; :

GOTO SPLIT:
END

FUNCTION ALFER A B; VARS C D;
(%XA.DESTWORD=-10%1->A; [XB.DESTWORD-10%1->B;

LOOP:IF B.NULL OR (A.DEST=>A~>C:B.DEST->B=>D;C>D) THEN FALSE EXIT;
IF C=D THEN GOTO LOOP CLOSE:
TRUE;

END

2.NL; ‘ALLSORT NOW READY TO USE‘.PR;2.NL}

rogvam Library

5384 ;

| CLOSE:;

LOSE; GOTO Li1;

LOOP CLOSE:

'HEN FALSE EXIT;

LIB ASSOC (127

Progrvam name. LIB ASSOC
Souvce, A.P.Ambler, R. M. Burstall, DMIP; Date of issue.
February 1969.

TIntvoduction. It is sometimes useful to associate pairs of items
together so that, given the first item of any pair, one can get the
second. For example, a dictionary can be regarded as a set of pairs
{(cat, chat), (dog, chenet)...}. A function is needed which, given the
dictionary and "cat", will produce "chat". It is also useful to have
functions to add new pairs to the dictionary and to alter the items in
the pairs. One might want to add (duck, canard) to the dictionary, or
alter (dog, chenet) to (dog, chien). The system of association sets
described here provide such a facility. In some respects they can
also be thought of as 'non-numerical strips'.

The idea of associated pairs is taken further in the accompanying
library program LIB NEW STRUCTURES, which provides non-
numerical arrays and pseudo-records.

fAssociation sets. An association set is a set of pairs, a pair being
two items which are 'associated' with each other (not necessarily a
POP-2 pair). For the purposes of this description, one item of a pair
is called a subsc#ipt and the other a component. (These names have
been used because of the similarity between association sets and
POP-2 strips. Avgument and value could have been used equally well.)
Several functions for processing association sets are desirable.
These include the constructive functions which add pairs to the set,
and the functions for selecting, or updating, a component of a pair in
the set, given the subscript with which it is associated.

IComponent-selecting functions. There is a family of functions (compo-
nent-selecting functions) which, given an association set and a subscript,
search through the pairs for one with that subscript. If such a pair is
found, then the result is the component of that pair. The action taken
when such a pair is not found depends on the particular component-
selecting function being used.

Example. Consider a dictionary which is an association set {cat, chat),
(dog, chien), (duck, canard)}. Then any component-selecting function,
applied to it and to "dog" should produce "chien". A particular compo-
nent-selecting function applied to this dictionary and "horse" would
produce "undef", whereas another one might cause 'please tell me the
French for horse' to be output.

TComponent-updating functions. . There is a family of functions
(component-updating functions) which, given an association set, a sub-
script, and a component, search through the set for a pair whose
subscript is that component. If such a pair is found, then the existing
component in it is replaced by the supplied component. The action
taken when one is not found depends on the particular component-
updating function being used.

Example. Consider a dictionary which is an association set {(cat, chat),
(dog, chenet), (duck, canard)}. Then any component-updating function
given "chien", "dog", and the dictionary should alter the pair (dog,
chenet) to (dog, chien). A particular function, given "cheval", "horse",
and the dictionary, might add the pair (horse, cheval) to the dictionary.

TConstructive functions for adding paivs to an association set. A
function for adding items to a set is ideally one which searches through
the set before adding the item, to check that it does not already occur

128) Part 4: Progvam Library

in the set. If the pairs of an association set are considered to be
characterized by their subscripts, then two such searching functions
have been described above—the component-selecting and component-
updating functions. In this program the same function is used to add

a new pair to the set as is used to update a pair—it is a function which
searches through the set for a pair whose subscript is the same as the
supplied subscript, and, if it fails to find one, constructs a new pair
from the supplied subscript and component and adds it to the set.
(There is also a component-selecting function which can add new pairs
to a set. If this function fails to find a suitable pair it constructs a
new one, the component of which is obtained by applying a suitable
function to the supplied subscript.)

YFunctions operating on association sets. The 'empty' association set
is a data structure and is not represented by a variable, but by the
result of the operation ASSNIL (precedence 1),

assnull € association set => truth value

The function ASSNULL tests whether an association set is empty or
not.
assnull € association set => truth value

The three characteristic facilities (namely component-selection,
component-updating and pair-addition) are combined in one function—
here called an assoc function. An assoc function is a doublet. It is a
component-selecting function which has a component-updating (and
consequently pair-addition) function in its update part. The function
ASSOC is provided, together with two functions ASSOCF and ASSOCM
for defining other assoc functions. These differ in the result obtained
when attempting to select from an association pair which does not
occur in the association set (that is, they differ in their 'fail' result).
They all have the same update function ASSUF.

ASSOC is the simplest of the assoc functions. It maps a subscript
and an association set onto a component. The fail result is always
UNDEF.

assoc € subscript, assoc set => component or UNDEF

ASSOCT and ASSOCM are used to define other assoc functions. ASSOCF
applied to an item (the desired fail result) produces a function whose
fail result is that item. It does not depend on the subscript.

assocf € fail result => (subscript, assoc set => component or undef)

ASSOCM is used to define a constructive assoc function. Applied to

a 'compute' function it produces an assoc function whose fail result

is obtained by applying the compute function to the subscript. Further-
more, in the fail case, a new subscript-component pair is added to the
association set.

assocm € (subscript => component) => (subscript, assoc set

=> component)
The function which forms the update part of all these assoc functions
is ASSUF. It either replaces the component of an existing pair by the
supplied component, or creates a new subscript-component pair and
adds it to the association set.

assuf € component, subscript, assoc set => ()

The function ASSLENGTH maps an association set onto the number of
pairs in it.

asslength € association set => integer

cvam Libvary

d to be

r functions
omponent-
sed to add
nction which
 same as the
new pair

the set.

dd new pairs
structs a
suitable

sociation set
it by the

empty or

ection,

e function—
let. It is a
ting (and

e function
d ASSOCM
ult obtained
Joes not

il' result).

1bscript
3 always

ions. ASSOCF
tion whose
.

or undef)

\pplied to

ail result
pt. Further-
1dded to the

et
c functions

pair by the
[pair and

» number of

LIB ASSOC (129

rAssociation lists. An association set is actually represented by a list.
An association list is not a POP-2 list and POP-2 list processing
functions cannot be used on it. Some association list processing
functions are available. These include ASSNULL and ASSLENGTH
which have been described above. Other functions on association

lists are:

ASSPR — which prints an association list
asspr € association list = () _
ASSSUB — which maps an association list onto the subscript of the

first pair in it.
asssub € association list => subscript

ASSCPT — which maps an association list onto the component of the
first pair in it.
asscpt € association list => component

ASSTL. — which maps an association list onto an association list
by removing the first pair.
asstl € association list => association list

ASSNEXT — which maps an association list onto the first component,
the first subscript and the 'tail’ of the list.
assnext € association list => component, subscript,
assoclation list.

It should be noted that, in this representation of association sets as
lists ASSUF (the update function of ASSOC, ASSOCF, ASSOCM) adds
new pairs to the end of the association list, rather than to the beginning.

gErrovs. An attempt to apply an association list processing function to
an item which is not an association list produces the POP-2 error 45
and SETPOP, the culprit being the item which was not an association
list.

MTmplementation of association lists and their efficiency. Association
lists are implemented in this program using records of three compo-
nents—dataword ASS. The components are ASSSUB, ASSCPT and ASSTL.
Such a record is called an ASSOC PAIR. An empty association list is
an assoc pair whose ASSTL is FALSE. An association list is either an
empty association list or it is an assoc pair whose asstl is another
association list.

The empty association list requires four words of store, and each pair
of items in the list requires four words.

7Global variables. All global variables in the program are prefixed by
the letter ASS.

fStove used. The program requires approximately 3 blocks of store
on the 4100.

fHow to use the program. The program should be compiled by typing
COMPILE(LIBRARY([LIB ASSOC)));

When the compilation has been completed, LIB ASSOC READY is
output on the console and the program is ready. Use of the program
is best demonstrated by the examples which follow.

TExamples

Example 1. Use of ASSOC to create an English-French dictionary.

: VARS DICT; ASSNIL — DICT; (creates 'empty' dictionary)
: "CHAX" —> ASSOC("CAT", DICT); (adds the pair (cat, chax))

: ASSOC("CAT", DICT) => (selects the component

** CHAX, associated with "cat")

130)

Part 4: Program Library

: "CHAT" —> ASSOC("CAT", DICT);
: ASSOC("CAT", DICT) =>
** CHAT,
: ASSOC("DOG", DICT) =>
** UNDEF,
: "CHIEN" —> ASSOC("DOG", DICT);
: ASSPR(DICT);
CAT CHAT
DOG CHIEN

(replaces "CHAX" by
"CHAT n)

(attempt to select from a
pair which does not exist)
(adds the pair (dog, chien))
(prints the association list)

Example 2. Use of ASSOCF in using stored data.

: VARS DATA; ASSNIL —> DATA;
: 10 — ASSOC("WEIGHT", DATA);
: ASSOC("HEIGHT ", DATA)*ASSOC
("WEIGHT", DATA) =>

ERROR 47

CULPRIT UNDEF

SETPOP:

: VARS NUMASS; ASSOCF(0) — NUMASS;

: NUMASS("HEIGHT", DATA)*NUMASS
("WEIGHT", DATA) =>

ok

(creates 'empty' structure)
(adds a pair to the structure)
(attempt to select component
which does not exist.

The result is UNDEF, which
gives an arithmetic error)

(creates a new assoc func-
tion whose fail result is 0.)
(again there is an attempt
to select from a pair which
does not exist. The result
is now 0—a suitable argu-
ment for arithmetic
operations)

Example 3. Use of ASSOCM in constructing and using a dictionary.

: VARS FRENCH; ASSNIL — FRENCH;

: VARS FIND;

: ASSOCM(LAMBDA X; NL(1);

: PR([WHAT IS THE FRENCH
FORK >[% X%]);
ITEMREAD();

END;) — FIND;

: FIND("CAT", FRENCH) —> X;
[WHAT IS THE FRENCH FOR CAT]

: CHAT

FUNCTION TRANSLATE SENTENCE

DICT;
: MAPLIST(SENTENCE, FIND(%DICT%));
: END;
: "LE" — FIND("THE", FRENCH);

: "POISSON" —> FIND("FISH", FRENCH);

: TRANSLATE([THE CAT EATS THE
FISH|, FRENCH) =>
[WHAT IS THE FRENCH FOR EATS]
: MANGE
** [LE CHAT MANGE LE POISSON]

(creates an 'empty’
dictionary)

(creates an assoc function
whose fail action is to ask
for words it cannot find)
(attempt to select from pair
which does not exist)

(the system is waiting for
a reply)

(reply typed by user. The
pair (cat, chat) is now
added to the dictionary)
(definition of a function to
convert words from one
language into another)

(adding new pairs to the
French dictionary)

(the program cannot trans-
late the sentence until it
knows the French for EATS)
(reply typed by user)

(output by system as soon
as all the needed words are
in the dictionary).

vogvam Library

'CHAX" by

select from a
does not exist)
ir (dog, chien))
association list)

pty’ structure)
‘to the structure)
select component
ot exist.

s UNDEF, which
thmetic error)

ew assoc func-
il result is 0.)
is an attempt
m a pair which
5t. The result
uitable argu-
thmetic

lictionary,
empty’

ssoc function
lion is to ask
annot find)
lect from pair
t exist)

5 waiting for

y user. The
) is now
ictionary)

. function to
from one
w.nother)

irs to the
ary)

annot trans-
ce until it

ich for EATS)
user)

2m as soon
2d words are
y).

LIB ASSOC (131
CASSOC)

VARS ASSNILCONS ASSNULL ASSNEXT ASSLENGTH ASSPR ASSCONS
ASSTL ASSSUB ASSCPT ASSF ASSUF ASSCF ASSUCF;

RECORDFNS("ASS",[0 0 01)->ASSTL =>ASSSuB -)ASSCPT
->ASSNEXT =>ASSCONS;

VARS OPERATION 7 ASSNIL:

ASSCONS(%UNDEF.UNDEF,FALSE%)'> ASSNILCONS;
ASSNILCONS-> NONOP ASSNIL;

FUNCTION ASSNULL ASS; NOT(ASSTL(ASS)); END;

FUNCTION ASSLENGTH ASS; VARS ASSN; 0->ASSN;
LOOP;
IF ASSNULL(ASS) THEN ASSN
ELSE ASSN+1->ASSN; ASSTL(ASS)->ASS; GOTO LOOP;
CLOSE;
END;

FUNCTION ASSPR ASS; VARS ASSCPTT ASSSUBT: NL(1):
LOOP:

IF ASSNULL(ASS) THEN RETURN
ELSE ASSNEXT(ASS)-> ASS -> ASSSUBT ~5>ASSCPTT; SP(4);
PR(ASSSUBT); SP(4); PRCASSCPTT); NL(1);
GOTO Loop;
CLOSE:
END;

FUNCTION ASSF X ASS U;
LOOP:
IF ASSNULL(ASS) THEN U
ELSEIF X=ASSSUB(ASS) THEN ASSCPT(ASS)
ELSE ASSTL(ASS)-> ASS; GOTO LooOP;
CLOSE;
END;

FUNCTION ASSUF Y X ASS;
LOOP:
IF ASSNULL(ASS) THEN
X=>ASSSUB(ASS); Y=->ASSCPT(ASS); ASSNIL->ASSTL(ASS);
ELSEIF X=ASSSUB(ASS) THEN Y=>ASSCPT(ASS);

ELSE ASSTL(ASS)-> ASS; GOTO LooOP;
CLOSE:;
END;

FUNCTION ASSCF ASS Xx U;
ASSF (X,ASS,U);
END;

FUNCTION ASSUCF Y ASS X;
ASSUF(Y.X,ASS);
END;

FUNCTION ASSMEMO X ASS ASSMEMOF ;
LOOP:
IF ASSNULL (ASS) THEN
X+ ASSMEMOF=->Y; X=>ASSSUB(ASS); Y=->ASSCPT(ASS);
ASSNIL->ASSTL(ASS); Y H
ELSEIF X=ASSSUB(ASS) THEN ASSCPT(ASS)

ELSE ASSTL(ASS)-> ASS; GOTO LOOP;
CLOSE; ’
END;

132) Part 4: Program Library

FUNCTION ASSMEMOC ASS ASSMEMOF X;
ASSMEMO(X,ASS, ASSMEMOF) ;
END;

FUNCTION NEWCPTMEMO ASSKEY ASSMEMOF; VARS ASSFF;
ASSMEMOC (XASSMEMOF , ASSKEYX)=> ASSFF;
ASSUCF (XASSKEYX) ->UPDATER(ASSFF); ASSFF;

END;

VARS ASSOC;

ASSF (XUNDEFX)->ASS0C;

ASSUF=>UPDATER(ASSOC);

FUNCTION ASSOCF FAIL; VARS ASSOF;
ASSF(XFAILX)=->ASSOF;
ASSUF=>UPDATER(ASSOF); ASSOF;

END:

FUNCTION ASSOCM ASSFN; VARS ASSOM;
ASSMEMO(XASSFNX)=->ASSOM;
ASSUF=->UPDATER(ASSOM); ASSOM;

END:

‘L1B ASSOC READY'.PR;

gvam Library

LIB CALL AND EXPLAIN (133

Program name. LIB CALL AND EXPLAIN
Source. R.M. Burstall, DMIP; Datfe of issue. February 1969.

fDescription. This program enables one to make functions self-explana-
tory so that they can be used more easily by someone unfamiliar with
them, and to use functions so prepared.

It is often difficult to use a function provided by someone else, for ex-
ample, a library function, because one has forgotten: (2) what it does, -
(b) what parameters it needs, and (c) what results it produces.

Similarly, if a package of functions is available, it is often difficult to
remember exactly what it is for, and what functions it contains.

The EXPLAIN facility allows a person ('the documenter') to create ex-
planatory material in a file about a package of functions so that any
other person (‘the user') can use them more easily. This is intended
to give an aide-memoire rather than a substitute for written documen-
tation, and is thus of the same ilk as POPCHAT in the POPSTATS sys~
tem, but less comprehensive, shorter, and simpler.

Two functions are provided for the user, The EXPLAIN function enables
him to get an explanatory message about a package or any function in it.
The CALL function enables him to call any function in the package and
then be asked for its parameters by their names (he must respond by
typing a suitable POP-2 expression terminated by ** for each parameter
requested), and finally to have the results of the function printed with
their names.

YHow to use the program. Assume inthe following that (package) is the
name of a package of functions, for example, LIB SETS.

A, How to use a self-explanatory package. Compile the explanatory
package by typing:

COMPILE(LIBRARY([EXPLAIN(package)])); (Assuming an explanation
file is available)

This may be repeated for any other packages you wish to use.
To get an explanation of the package, type:
EXPLAIN {package);

To get an explanation of a function {f), type:
EXPLAIN {); (a reply of UNDEF means that no explanatmn is available).

To use the CALL facility with a function (B, type:

CALL (f); The machine will now print:
ENTER &
(p)= where (p) is the name of the first parameter.

The user must now type in the required value for this parameter (any
POP-2 expression) and terminate it with **, the machine will now output
the name of the next parameter, and so on for all parameters of the func-
tion.

The machine now computes the values of (f) and types:

EXIT)
(ry) = vy) where (r) is the name of the result,
(r2> =(vy) and (v) its value, for the (n) results of the function.

(I‘ m) = <Vm>

T

134) Part 4: Progvam Library

If the function ¢) had not previously been made self-explanatory, the use
‘ of CALL results in the message NOSPEC (no specification) being typed.

Notles

(1) Making a function self-explanatory affects its FNPROPS, but does
not otherwise alter it. This means that it is still possible to use ® in
the normal way, for example, in some other function by £(x, y).

(2) X the DEBUG package is in use, do not CALL g function which has
been BUGged. A self-explanatory function has already been SPECced,
since SPECIFY, a function similar to SPEC, is used to make it self-
explanatory. :

(3) To remove the current explanations and free some store, the
user should type: . ASSNII, —> EXPLS;

Example of the use of a self-explanatory package. In the following all }
user's input is underlined. .

COMPILE (LIBRARY(/LIB CALL AND EXPLAIN s
COMPILE (LIBRARY ({RANDOM PROG]));
COMPILE(LIBRARY(EXPLAIN RANDOM PROG]));

EXPLAIN [RANDOM PROG;

"RANDOM PROG CONTAINS FUNCTIONS TO GENERATE

RANDOM NUMBERS:

RANDO1 TO GET A RANDOM NUMBER X, 0 =< X< 1.

RANDINT TO GET A RANDOM INTEGERI, L =<1I=<U.

RANDNORM TO GET A NORMALLY DISTRIBUTED RANDOM NUMBER.
TO RESET RANDOM SEQUENCE, ASSIGN A NUMBER TO RANSEED

CALL RANDNORM; !

ENTER RANDNORM , |
MEAN = 30**
STANDEV =; 6, 5**

EXIT RANDNORM
RANDOM = 30. 38

EXPLAIN RANDINT;

RANDINT NEEDS A LOWER BOUND AND AN UPPER BOUND. IT
PRODUCES A RANDOM INTEGER EVENLY DISTRIBUTED BETWEEN
THEM>

CALL RANDINT;

ENTER RANDINT;
LOWBOUND =: 3**
UPBOUND =: 10**

EXIT RANDINT;
RANDOM = 8

Note. The above is an example using a hypothetical brogram, there being
no library file called RANDOM PROG.

B. How to make a backage self-explanatory. The documenter must
create a file EXPLAIN (package) where (package) is the name of the
package. This file is then compiled by the user when he wants to use
the package in self-explanatory mode.

vam Library

atory, the use
 being typed.

'S, but does
o use {f) in
y).

n which has
1 SPECced,
e it self-

re, the

llowing all

)M NUMBER.
 ANSEED

ND. IT
BETWEEN

m, there being

ter must
1e of the
ts to use

N o S

LIB CALL AND EXPLAIN (135

4, ,.." means an explanatory message, that is, a string or list of strings,
{f) means the name of a function, {p) the name of a parameter and (r) of
a result. Then the file EXPLAIN package is:

/,..N—> EXPLAIN ({package))
/... —> EXPLAIN ({)); repeated
SPECIFY (®, [{p). . ©)], [(). .{r)]); } for each function ()

fExample. The file[EXPLAIN RANDOM PROG] might be:

/RANDOM CONTAINS etc.' —> EXPLAIN ([LIB RANDOM));
/RANDO1 MAKES A RANDOM etc.'—> EXPLAIN(RANDO1);
SPECIFY (RANDO1, [], [RANDOMY));

/RANDINT NEEDS efc.' —> EXPLAIN(RANDINT);
SPECIFY(RANDINT, [LOWBOUND UPBOUND], [RANDOM));
/RANDNORM PRODUCES etc.' —> EXPLAIN (RANDNORM);
SPECIFY(RANDNORM, [MEAN STANDEV], [RANDOM]);

fMethod used. Explanations are kept in a simple association list
against names of packages or functions.

Parameter names and result names are hung on the fnprops list as in
LIB DEBUG, in fact SPECIFY is the same function as SPEC. CALL
just uses this information to request the parameters and print the
results.

fNames of global variables and functions. Global variables: EXPLS
EXPLAIN(operation 2), CALL(operation 2) ITSREAD, ASSNIL, ASS,
ASSU.

REFERENCENCES

Burstall, R. M. (1968) The helpful civil servant, a conversational control
routine. Reseavch Memovandum MIP-R-38. Edinburgh: Depart-
ment of Machine Intelligence and Perception.

Michie, D, & Weir, S. (1968) Application of Burstall's control routine
to conversational statistics. Research Memovrandum MIP-R-39.
Edinburgh: Department of Machine Intelligence and Perception.

Library file LIB POPSTATS.

Library file LIB DEBUG.

ADDENDUM TO LIB CALL AND
EXPLAIN

Source. D.L. Marsh,DMIP; Date of issue. June 1969

A further command function has been added called TEACH.

This operates in the same way as the CALL function except that on

exit from the function the machine does not type the function results but
waits for the user to input them. These must by typed in the same for-
mat as the arguments, that is, a POP-2 expression terminated by **.
The machine will check the user's result with the actual result and will
reply 'CORRECT' or with the message 'NO — THE CORRECT ANSWER
IS' followed by the actual result.

. 136) Part 4: Progvam Library

YExample
: COMPILE (LIBRARY([EXPLAIN LIB SETS]));
: TEACH UNION;

ENTER UNION

SET1 =:[12 3] **
SET2 =: [2 3 4] **
EQUIV = : NONQP = **

EXIT UNION
SET =:[123234]**
'NO — THE CORRECT ANSWER IS' [1 2 3 4]

: TEACH UNION;

ENTER UNION
SET1=:[5679]*
SET2 =: [A 7 10]**
EQUIV = : NONOP = **

EXIT UNION
SET =:[569 A 10] **
'NO — THE CORRECT ANSWER IS' [5 6 7 9 A 10]

: TEACH UNION;

ENTER UNION

SET1 =:[123]**
SET2 =: [2 3 4] **
EQUIV =: NONOP = **

EXIT UNION
SET =: [12 3 4] **
'CORRECT'

: TEACH MEMBER,;
ENTER MEMBER

ELEMENT = : "FUMIGATE" **
SET =: [FICKLE FANDANGO FISSIPAROUS PUSTULE -

PERSPICACIOUS|**
EQUIV =
: NONOP = **

EXIT MEMBER
TRUTHVAL = : TRUE **
'NO — THE ANSWER IS' 0

Progvam Library , LIB CALL AND EXPLAIN (137
CCALL AND EXPLAIN] '
VARS TEACHEOUIV;

FUNCTION ASSNIL; NIL::NIL END;

FUNCTION ASS X A; VARS L3 A.TL=)>L;
Lo:

IF L.NULL THEN UNDEF

ELSEIF EQUAL(X,L.HD.FRONT) THEN L.HD.BACK

ELSE L,TL->L; GOTO L0 CLOSE |
END?

FUNCTION ASSU Y X A3 VARS L; A.TL->L;

Lo:

IF L.NULL THEN X::Y::A.TL=DA.TL

ELSE[F EQUAL(X,L.HD.FRONT) THEN Y->L.HD,BACK

ELSE L.TL->L; GOTO LO CLOSE
END:

ASSU=->UPDATER(ASS);
VARS EXPLS OPERATION 2 EXPLAIN; .ASSNIL=>EXPLS;

FUNCTION EXPLAIN F; :
NL(1); PR(ASS(F,EXPLS)): NL(1)3
END3

LAMBDA E F; E->ASS(F,EXPLS) END-> UPDATER(NONOP EXPLAIN);

FUNCTION SPECIFY F SPEIN SPEOUT; ‘
IF F.FNPROPS.ATOM THEN F.FNPROPS::NIL=>F.FNPROPS CLOSE:;
[%F .FNPROPS. HD, SPEIN, SPEOUTX]

->F .FNPROPS . HD I

END3 ‘

FUNCTION ITSRD; VARS I IL3 NIL=>IL;

L: ITEMREAD=>1; IF I="as#" THEN POPVAL(REV(IL)<>C:QO00N]1) EXIT:
[::IL=>IL; GOTO L

END;

VARS CALLPRINT OPERATION 2 CALL; PR->CALLPRINT;

FUNCTION CALL F; VARS SPEIN SPEQUT PARS:
IF F.FNPROPS.HD.ATOM THEN "NOSPEC".PR EXIT;
NL(1); "ENTER".PR;SP(1): F.FNPROPS.HD.HD.PR; NL(1);
F.FNPROPS.HD.TL.HD=>SPEIN;
APPLIST(SPEIN,LAMBDA NAME;SP(1); NAME.PR; 1,SP; "=".PR; 2.5P; .ITSRD END);
JF3 NL(1): "EXIT".PR; SP(1); F.FNPROPS.HD.HD.PR; NL{(1)}
F.FNPROPS.HD.TL.TL.HD=>SPEOUT;
MAPLIST(SPEOUT,ERASE); .REV:
APPLIST(SPEOUT,LLAMBDA NAME; .DEST->PARS3 SP(1); NAME.PR; 1.SP; “=".PR;
.CALLPRINT; PARS
END); .ERASE ;NL(1)
E END)
FUNCTION TEACHPRINT ANS;
VARS GUESS;.ITSRD->GUESS:
IF TEACHEQUIV(GUESS,ANS) THEN PR("CORRECT")
ELSE PR(‘NO - THE ANSWER IS');2.SP;
PR(ANS); !
CLOSE; !
L.NLS
END;

[TEACHPRINTI=->FNPROPS(TEACHPRINT);
VARS OPERATION 2 TEACH; |

FUNCTION NT12A F; CALLPRINT ; TEACHPRINT=>CALLPRINT;
CALL F;=>CALLPRINT;
END;

POPMESS([OPERATOR ‘USING TEACH. CHECK AUTHORISATION']);
NT12A=->NONOP TEACH: .NT12A;
END;

FUNCTION TEACH; i
i

2.NL; ‘CALL AND EXPLAIN READY FOR USE'.PR; 2.NL;

138) Part 4: Program Library

Progrvam name. LIB DCOMPILE :
Source. D.J.S.Pullin, DMIP. Date of issue. December 1968.

TDescription. This program provides a simple line editing facility for
use with Multi-POP and the disc.

When DCOMPILE is entered, all input from the teletype, as well as
being compiled in the normal way, is copied to the user's disc track.
Line numbers are output at the beginning of each line.

It should be noted that DCOMPILE does not allow insertion of lines in
the middle of a file; it allows the user to compile a selected area up to
a specified line, when the user can continue typing from that point (see
examples),

THow to use program. The program should be compiled by typing:
COMPILE(LIBRARY([LIB DCOMPILE]));
(1) To initially set up DCOMPILE so that the teletype input is being

copied to the disc, as well as being compiled, type:
DCOMPILE(TR, N, 0, 0); where TR is your disc track, and N is a
suitable sector.

A line number will be output at the beginning of each line. If a compile
error occurs, the usual error messages are output, the disc file is
closed, and an exit is made from DCOMPILE.

(2) To restart after an error in line M+1 inside a function which starts
at line L, type:

DCOMPILE(TR, N, L, M);

The lines L to M will be output on the teletype, the next line number is
output, and the user may now continue typing.

(3) To restart after an error in the first line of a function starting

at line L, type:

DCOMPILE(TR, N, L, 0);

In all cases when the user wishes to close the disc file the HALT

character (CTRL and T), should be typed, the message:
'DISC FILE CLOSED. NEXT FREE SECTOR IS' S

where S is an integer, will then be output, and DCOMPILE will exit.

The complete file can be used as a normal file, using DISCIN, and
it should be noted that the line numbeérs do not appear on the disc.

TGlobal variables.
DCOMPILE, DCOMPFUN.

IStorve Used
The program requires approximately 1.5 blocks of store.

TExample of the use of dcompile

COMPILE (LIBRARY ([LIB DCOMPILE]));

: DCOMPILE(68, 50, 0, 0);
: FUNCTION RECFACT N;
IF N=0 THEN 1 ELSE N*RECFACT(N-1) CLOSE
END;
RECFACT (4)=>

* %k 24,

vogram Library

nber 1968.
ting facility for

as well as
s disc track.

ion of lines in
cted area up to
that point (see

1 by typing:
nput is being
and N is a

e. If a compile
lisc file is

ion which starts

line number is

jon starting

he HALT

. will exit.

5CIN, and
| the disc.

r

LIB DCOMPILE (139

roowex2

1
1

10:

13:

**24

FUNCTION INFACT N;
VARS TOT; 1 — TOT;
LOOP:)
IF N=0 THEN TOT ELSE
N*TOT — TOT; N-1 —> N;
GOTO LOOP; END;

ERROR 22

IN FUNCTION INFACT
CULPRIT END
SETPOP:

: DCOMPILE(68, 50, 5, 10);
6: FUNCTION INFACT N;
7. VARS TOT; 1 -— TOT,

8: LOOP:

9

IF N=0 THEN TOT ELSE
N*TOT — TOT; N-1 —> N;

11: GOTO LOOP; CLOSE;
12: END;

. INFACT(4)=>

(mistake made)

(restart at
beginning of
function INFACT)

(lines 6 to 10 output)
(type in the

correct lines)
(note-HALT typed)

'DiSC FILE CLOSED. NEXT FREE SECTOR IS' 51

140) Part 4: Program Library
CDCOMPILE)

VARS DCOMPFUN;
FUNCTION DCOMPILE A B C D:;VARS V W X Y Z SS;
FUNCTION ERRF Z SS;TERMIN.Z;SS->ERRFUN; ,ERRFUN END;

FUNCTION FRED1;VARS U;
+A->U3U.B3U.Z3U
END3

FUNCTION FRED A B C D Z ZZ SS;VARS P;
J2Z->P; _
IF P=TERMIN THEN SS->ERRFUN; [DISC FILE CLOSED . NEXT SECTOR IS1 .PR;
Z.DSECTOR.PR;GOTO L1 CLOSE;
IF- P=17 THEN (C+1).PR;C+1->FROZVAL (3,DCOMPFUN);
IF NOT(A=CHARIN) THEN
D-1=->FROZVAL (4, DCOMPFUN);
IF D=0 THEN CHARIN=>FROZVAL (1,DCOMPFUN):ERASE->FROZVAL(2,DCOMPFUN)
ELSE PR(":") CLOSE
CLOSE
CLOSE:
Li: p
END;

ERRFUN=>SS;
A»B8.DISCOUT=>Z;ERRF (XZ,SS%)=>ERRFUN;
IF C=p0 THEN 1->C;C.PR;L5: CHARIN->A;ERASE->B;GOTO L1 CLOSE;
A,B.DISCIN->A;ERASE->B;
D=C->D;C->V;
L3:V=1=->V;IF V=0 THEN GOTO L2 CLOSE;
L4:1F .FRED1=17 THEN GOTO L3 CLOSE;
GOTO L4;
L2: C.PR;IF D<0 THEN GOTO LS5 CLOSE;
CHAROUT=->B;":" .PR;
L1:FRED(%A,B,C,D,Z,FRED1,SS%)=>DCOMPFUN;DCOMPFUN.COMPILE;
END:

2.NL; ’DCOMPILE NOW READY FOR USE'.PR; 2.NL; -

ogram Library

ECTOR 1S] .PR;

L (2, DCOMPFUN)

awr

r

Program name. LIB DEBUG ,
Source. R.M.Burstall,R.D, Dunn, DMIP; Datle of issue. December
1968,

LIB DEBUG (141

¥ Description. This program provides a powerful debugging aid for
POP-2 programs by allowing the user to output the values of selected
arguments and results of functions, when they are obeyed.

¥ How to use the debugging aids. In the 4100 implementations of POP-2
these routines are implemented as standard functions, Please refer

to the Functional Specification of the system you are using, if the
debugging aids are not available as standard, then type:

COMPILE (LIBRARY ([LIB DEBUG]));

The user first specifies any functions he may wish to have traced, by
using the macro SPEC.
(specification) ::=(formal parameter list) (output local list);

Please refer to section 4, 1 of the reference manual. Thus the
specification of a function looks like the first line of a function
definition, with the word FUNCTION replaced by the word SPEC.

For example, consider the function:

FUNCTION ADD X Y;
X+Y
END;

Using the output local list facility in the language, this can be written
as:
FUNCTION ADD X Y => RESULT;
X+Y — RESULT;
END;

To specify ADD one would do:
SPEC ADD X Y => RESULT;

Note. The function does #of need to be written in the second form
(using the output local list facility) in order that it may be specified.

Similarly, if the function F has four arguments, say A, B, C, and D, and
produces three results, say X, Y, and Z, then F may be specified by
doing:

SPECFABCD=XY Z;

It is not necessary however to specify all parameters and results, just
the last m parameters, and # results may be specified if desired

(m =0,n =0), Also if, in the specification, a parameter or result is
given as the item *,then that parameter or result will not be printed
when tracing.

For example, if with function F above, it is required to trace the values
of C, X, and Z only, then the specification would appear as:

"SPECFC*=>X*1z;

SPEC may be applied any number of times, if it is required to change
the specification.

Specifying a function has no effect on its running speed, and only uses
a few words of store for each function, so that it can well be done after
each function, or group of functions, when writing the program in the
first place.

142) Part 4: Program Library

To cause a particular function, or functions, to be traced, the macro
BUG should be used in the following way:

BUG ADD; will cause the function ADD to be traced,
BUG ADD F1 F; will cause the functions ADD, Fl, and F, to be traced.
etc.

From then on, tracing will occur on entry to, and on exit from, the
bugged functions provided that the variable DEBUG is set to TRUE.

Thus the tracing can be controlled over all functions bugged, by setting
the variable DEBUG to FALSE, for no output, or TRUE, for output.

The printout given while tracing is, on entry to the function, the name

of the function on a new line, preceded by the symbol '>"', and followed
by the names of the selected arguments and their values. On exit from
the function the name of the function is printed on a new line preceded
by the symbol '< ', and is followed by the names of the selected

results and their values,

If a function which has not been specified with SPEC, is bugged, then
the printout consists of the name of the function only.

If a doublet is BUGged then a doublet will be produced, however the
update part of the doublet must be SPECced separately.

On each function entry the printout is indented by one space, and on
exit the indentation is reduced by one space,the amount of indentation
being held in the variable DEBSP. The user may change the value of
this variable during a trace if a special lay-out is required. DEBSP is
automatically re-set to zero if an error occurs, or if the user inter-
rupts the process by pressing the bell character on the console, on all
implementations which have these facilities as standard, otherwise
DEBSP must be reset by the user.

The values of parameters and results are printed during tracing by

the function DEBPR, which initially has the value PR, This function may
be redefined by the user, if it is required to print special values,
arrays, or records,for example. The definition given to DEBPR must
be a function which takes one argument and leaves no results. If this

is not done the result of the debugging will be undefined,

To stop tracing a particular function, or functions,the macro UNBUG
should be used in a similar way to BUG, for example,

UNBUG ADD; will cause the debugging mechanism to be
removed from ADD,

UNBUG FF GETY; removes the debugging mechanism from the
functions FF and GETY.

etc,

It should be noted that BUG and UNBUG affect the function stored in
the function variable, and if the value of the function has to be taken
out and used elsewhere, for example, by partially applying it, or tying
it up in a data structure, they will not affect the incorporated function,

7 Global variables used. DEBUG DEBSP SPEC BUGIO BUGIN BUGOUT
BUG UNBUG,

T Examples of the use of the debugging aids
FUNCTION ADD X Y;

: X+Y

: END;

ogrvam Library

LIB DEBUG

(143

the macro

d,
, to be traced.

from, the
t to TRUE.

zed, by setting
r output.

on, the name
, and followed

On exit from

line preceded
lected

ugged, then
ywever the

.ce, and on

f indentation
the value of
ed. DEBSP is
user inter-
onsole, on all
otherwise

tracing by

is function may
values,
DEBPR must
sults. If this

cro UNBUG

to be

rom the

n stored in
0 be taken

y it, or tying
ited function,

UGIN BUGOUT

. END;

. SPEC ADD X Y => SUM;

. FUNCTION ADD3 UV W;

ADD(ADD(U, V), W)

. SPEC ADD3 V * => SUMS3;
. BUG ADD ADD3;

. TRUE —> DEBUG;

. ADD3(1, 2, 3) =>

>ADD3; V=2%*
>ADD; X=3,Y=2,
<ADD; SUM= 5,
>ADD; X=5,Y=1,
<ADD; SUM= 6,

<ADD3; SUMS3= 6,

**6
’

. UNBUG ADD;
: ADD3(2, 3,4) =

>ADD3; V=3,%,
< ADD3; SUM3= 9,

**9
)

144) Pavt 4: Program Library

CDEBUG]

VARS DESPR DEBSP DEBUG:

MACRO SPEC:
VARS. FN X3
ITEMREAD()=>FN;
MACRESULTS(LX [%
CX FN,
[% (LO: ITEMREAD()=>X: ’
IF NOT(X=*;") AND NOT(X="=>") THEN X GOTO LO CLOSE) %1,
IF X=*;" THEN NIL ELSE
C% (L1: ITEMREAD()=>X; IF NOT(X=";") THEN X GOTO L1 CLOSE) %]
CLOSE- %] %),
"e>",FN,".","FNPROPS"," ;" X])
END;

FUNCTION BUGIO F3
VARS X3
NL(1); SP(DEBSP); PR(); FNPROPS()->X:;
IF NULL(X) THEN LO: PR(X); PR(";") EXIT;
HD(X)=>X3
IF ATOM(X) THEN GOTO LO CLOSE;
PRCHD(X)); PR(";");' F(TL(X))=>X; REV(MAPLIST(X,ERASE));
APPLIST(X,
LAMBDA U;
NEXT()=>X; SP(1); PR(U);
IF NOT(U="&") THEN PR("="); =->U; DEBPR(U); U CLOSE;
PR(™,*); X
END); =->X
END;

FUNCTION DEBFN X;
IF. DEBUG THEN BUGIO(X,">",HD); DEBSP+1->DEBSP; X();
DEBSP-1->DEBSP; BUGIO(X,"<",LAMBDA; HD(TL()) END)
EXIT:
X0
END;

MACRO BUG:
VARS X3
MACRESULTS([%
(Lo:
ITEMREAD()=>X; .
£ IF NOT(X=";") THEN "DEBFN","(X",X,"%X)","=>",X,";" GOTO LO CLOSE) X1)
ND;

MACRO UNRUG;
VARS X3
MACRESULTS (X%
(LO:
ITEMREAD ()=>X;
IF NOT(X=";") THEN 1,",",X,".","FROZVAL","=>",X,";" GOTO LO CLOSE) %1)
END;

PR=~>DEBPR; 0->DEBSP; FALSE~->DEBUG:

r

Progvam Library

) CLOSE) %3],
L1 CLOSE) %3

E 3

0 LO CLOSE) %X1)

0TO LO CLOSE) X1)

LIB EASYFILE (146

Program name. LIB EASYFILE
Source. R.M.Burstall, R. H, Rae, A. P, Ambler, DMIP; Datle of issue.
February 1969.

¥ Description. This program provides several basic commands to
handle disc files by name (the name being any list) and enables one to;

1. Read a new file,typed on the console, to disc; (DREAD)

2. Read in a file to disc from paper tape; (DPTIN)

3. Read in a file to disc from a character repeater specified by the
user; (DREPIN)

4, Have a disc file typed out at the console; (DTYPE)

5. Have a disc file listed on the line printer; (DLP80)

6. Have a disc file copied onto paper tape; (DPTOUT)

7. Obtain the character repeater of a disc file; (DIN)

8. Compile a disc file; (DCOMP)

9, Edit a disc file, using LIB POPEDIT and typing edit commands on
the console; (DEDIT)

10, Recover the original version of a disc file which has just been
edited; (DRECOVER)

11, Copy a disc file, giving it a new name; (DCOPY)

12. Discard a disc file no longer required; (DKILL),

The system currently uses a simple disc filing system and LIB
POPEDIT, It is anticipated that other editing or filing systems may be
substituted for these without changing the effect of the basic commands
listed above.

Y How to use the system. Compile the program by typing:
COMPILE (LIBRARY ([LIB EASYFILE)));

When the compilation is complete 'TYPE TRACK NUMBER' is output
on the console, and if this is nof the first time LIB EASYFILE has
been used with this track you should type the number of the disc track
you wish to use. The facilities described below may then be used
immediately (example 2). If this is the first time LIB EASYFILE has
ever been used with this track you should type 0 instead as you still
have to initialize it (see below and example 1),

¥ nitializing disc tracks. The first time LIB EASYFILE is used with
a disc track it must be initialized to the format required by the filing
system. To do this type

DISCINIT ([n1) (n2). ..]);
where (nl1),{n2), ... are the numbers of the tracks to be initialized.

The system is now ready to accept and handle files in this and
subsequent POP~2 sessions. The first 10 sectors of each track so
initialized are used by the system for storing the track's file directory.
The rest of the track will be used for your files, You may at any time
add further tracks to your filing system by calling DISCINIT again.

YChanging tracks. There is a separate directory for each track in use.
You may change from one track to another by typing

DTRACK(m));
where (n) is the number of the track you wish to use (see example 3).

7 Commands available. In this description {filename) denotes a file
name (for example, RMB THEOREMS or APA SYS 4).

146) Part 4: Progvam Library

A. Commands which create new disc files. DREAD([(filename)]);
reads characters from the console until a halt-code is depressed
(CTRL and T). The characters are put into a file (on disc) called
(filename). If a file with this name already exists, it is lost when the
halt-code is read from the console.

DPTIN([(filename)]); inputs the file (filename) from paper tape and
creates a disc file with the same name.

DREPlN(g(filename>], (charrep)); creates a disc file with the name
{filename) from the character repeater (charrep). This command can
be used to put files already on disc into the filing system. (For
example, when you first decide to use LIB EASYFILE, and already
have some files on disc which are indexed in some other way).

DCOPY ([(filenamel)], [{filename2)]); copies the file (filenamel) to the
file (filename?2).

DEDIT ([{filename)]); is a command which creates a new disc file. Its
use is described below under D.

When the transfers involved in the above commands have been
completed (that is, when a halt-code or TERMIN has been read) the
message

[(filename) COMPLETE DISCEND IS NOW (n)]

is output on the console.l For the significance of DISCEND and {n) see
below under HOUSEKEEPING. If a transfer to the disc is interrupted
before it is terminated (for example, by pressing CTRL and G) then the
new file is not entered in the directory.

B, Commands to copy a disc file onto another device. DTYPE
([filename)]); outputs to the console the file (filename). To interrupt
just depress CTRL and G.

DLP80([(filename)]); lists (filename) on the lineprinter.
DPTOUT ([{filename)]); outputs (filename) onto paper tape.

C. Commands for compiling disc files. DCOMP([{filename)]);
compiles the file(filename)., When the compilation has been completed
the message

[{filename) COMPILED]

is output on the console,

D. Commands for editing disc files., DEDIT ([{filename)]); edits a file
discarding the previous version. It expects edit commands from the
keyboard in the format of POPEDIT (see library documentation of LIB
POPEDIT). When the editing has been completed the message

[{tilename) COMPLETE DISCEND IS NOW (n)]

is output on the console. For the significance of DISCEND see below
under housekeeping, The original file is not lost until this message
has been output and it is therefore possible to recover from an
obviously wrong edit merely by interrupting it—depressing CTRL and
G. (To recover aftev the message has been output DRECOVER will
have to be used—see below.) In LIB POPEDIT when an edit ends not
under the control of SH the comment 'END OF INPUT FILE, OUTPUT
FILES NOT CLOSED' is output, This comment is not true when DEDIT
is used—the output file is closed.

DRECOVER ([{filename)]); puts back into the directory the version of
filename which has just been displaced by editing. The edited version

I

vogvam Libyvary

filename)]);
lepressed
se) called
lost when the

T tape and

the name
command can
n. (For

1d already

- way).

1amel) to the
disc file. Its

e been
n read) the

D and {(n) see
s interrupted
and G) then the

DTYPE
To interrupt

3
‘o

ame)]);
een completed

1); edits a file
ds from the
ntation of LIB
ssage

D see below

S message
om an

1g CTRL and
OVER will

it ends not
LE, OUTPUT
e when DEDIT

» version of
dited version

LIB EASYFILE (147

is discarded. DRECOVER can only be used successfully if there has
peen no intervening call of DEDIT, DTIDY (see below) or DTRACK. I
there has been such a call, or if the file is wrongly named, then the

message

[SORRY NOT POSSIBLE TO RECOVER (filename)]
is output.

E. Other commands to handle files. DIN([(filename)]); has as result
the input character repeater of the file (tilename), DIN is analogous to

DISCIN.

DKILL([{filename)]); discards the file (filename). The area of disc on
which it was stored will become available for other files.

YHousekeeping: Commands peculiar to the present filing system.

In the system used at present files are added to the disc track consecutively,
and the sectors freed by editing or killing files are not automatically
made available for re-use, To do this YOU must give the command:

.DTIDY;

which shuffles the files and makes the freed space available, (See
example 6.) It is desirable to use this command whenever your track is
in danger of becoming full. The variable DISCEND points to the next

_ free sector on the track being used. Whenever a new file is added to

the track the new value of DISCEND is printed so that you may know
how full your track is, DTIDY also prints the new value of DISCEND.,
(There are 160 sectors on a disc track.)

The system uses a directory which stores the actual position and size
(in sectors) of each file and free area.

DISCDIR =>
prints out this file directory. (See example 6.)

7 Ervors. An attempt to call a file by name which is not a list causes
ERROR 54. An attempt to access a file which is not in the directory
produces ERROR 57, Overfilling the track causes ERROR 79.

7 Suggestion for efficient use of the system. It should be more conve-
nient to keep a large program as a lot of short files with a master file
to compile them (or list them). (See example 5.) Not only is editing
much easier, but also the progress of compilation of a large program is
indicated by the messages output as each subsidiary file is compiled.
Also, if a large file is more than 80 sectors long it will not be possible
to edit it,as two copies of the file cannot exist on the 160 sectors of

the track.

¥ Global variables. These are:

DISC DISCTIDY DISCOFF DISCSINK DISCTRAC
DISCINIT

DOFIND DOTO DDIO

DUSER DREAD DPTIN DREPIN DCOPY DOUT DIN
DTYPE DLP80 DPTOUT DKILL DCOMP DEDIT DFREE
DRECOVER DTIDY DTRACK

DISCDIR DISCEND DISCUSER
DREC1 DREC2

148)

Part 4: Progvam Libvary

. TStore requived. This program requires approximately 4%, blocks of

core.

Y Examples of use.

In the examples which follow, a halt-code (depress-

ing CTRL and T) is indicated by @& . Characters typed in by the user
are underlined, to distinguish them from output from the machine.

Example 1,
editing and compiling it.

: COMPILE (LIBRARY ([LIB EASYFILE)));
"TYPE TRACK NUMBER': 0

: DISCINIT ([94]);

: DREAD(JAPA 1]);
: THE CAT SAT ON THE MAT].HD. PR;

'[[@PA 1] COMPLETE DISCEND IS NOW 11]
: DTYPE (JAPA 1));

THE CAT SAT ON THE MAT]. HD. PR;

: DEDIT([APA 1));

'POPEDIT READY FOR USE'

'READY: TYPE EDIT COMMANDS!

P18 [

: SH

'"EDIT FINISHED., OUTPUT FILES CLOSED!

[[APA 1] COMPLETE DISCEND IS NOW 12]

: DCOMP([APA 1]);

THE -

[[APA 1] COMPILED]:

Initializing a track, reading a file in from the console,

Example 2. A subsequent POP-2 session. Reading in a file from disc.

Use of DRECOVER.

: COMPILE(LIBRARY([LIB EASYFILE]));
'"TYPE TRACK NUMBER': 94

: DREPIN([SYSTEM], DISCIN(94, 100));
[[SYSTEM] COMPLETE DISCEND IS NOW 38]
:DEDIT([SYSTEM));

'"POPEDIT READY FOR USE'

'READY: TYPE EDIT COMMANDS'

: FL THEN

: DCX

: SH

'EDIT FINISHED. OUTPUT FILES CLOSED'
[[SYSTEM] COMPLETE DISCEND IS NOW 45]
: DCOMP([SYSTEM));.

ERROR 22 IN FUNCTION SYS

CULPRIT CLOSE

SETPOP

: DRECOVER([SYSTEM]);
: DCOMP (|SYSTEM]);
[[SYSTEM] COMPILED]:

(Bring file SYSTEM
under the control of
the filing system from
track 94 sector 100 on
the disc.)

(Edit this file.)

(Attempt to compile
the new file SYSTEM
uncovers a syntax
error in it.)
(Recover the old file
SYSTEM.)
(This file compiles
correctly,)

1D

rogram Library

7 4%, blocks of

-code (depress-
n by the user
> machine.

he console, -

file from disc.

file SYSTEM
he control of
g system from
4 sector 100 on

is file.)

t to compile

y file SYSTEM
I's a syntax

n it.)

r the old file
1.)

le compiles
tly.)

LIB EASYFILE (149

Example 3. Changing tracks (supposing that 93 and 94 have been
initialized at some earlier POP-2 session).

: COMPILE (LIBRARY ([LIB EASYFILE]));
"TYPE TRACK NUMBER'": 94

: DPTIN([APA 2]);

[[APA 2] COMPLETE DISCEND IS NOW 141]
: DTRACK (93);

(Change the track on

. DPTIN([THEOREMS]); which the system is
[[THEOREMS] COMPLETE DISCEND IS NOW currently operating

33] from 94 to 93,and
. read in a paper-tape
file to that track),

Example 4 Use of DTIDY

: DPTIN([SYSTEM 2]);
[[SYSTEM 2] COMPLETE DISCEND IS NOW 152]

: .DTIDY;
DISCEND NOW 127

Example 5 Storing a large program as several small files. Assume
that there are on the disc the files [APA SYS1],..... , [APA SYS6] and
they together comprise a program [APA SYSTEM]|, Make up a master
file [APA SYSTEM] as follows:

: DREAD([APA SYSTEM)); (GENFUN is an arbi-
: GENFUN([APA SYS1]); GENFUN([APA SYS2}); trary name for a

. GENFUN([APA SYS3]); GENFUN([APA SYS4]); function which can be
: GENFUNI([APA SYS5]); GENFUN([APA SYS6]); redefined so that the
& file can perform
[[PiPA SYSTEM] COMPLETE DISCEND IS NOW various actions.)

97

if you wish to compile [APA SYSTEM] do:

: DCOMP —> GENFUN;

. DCOMP (JAPA SYSTEM));
[[APA §YS1]| COMPILED]

[[APA SYS2] COMPILED]

(Define GENFUN to be
DCOMP. This will
cause the various sub
files to be compiled
when SYSTEM is com-
piled.)

[[APA SYS6] COMPILED]
[[APA SYSTEM] COMPILED]

if you wish to list [APA SYSTEM] on the line printer do:

: DLP80—>GENFUN; DCOMP({[APA SYSTEM]); (GENFUN is defined

[[APA SYSTEM] COMPILED] to be DLP80, this

: will cause a listing
of the sub files.)

if you wish to copy [APA SYSTEM] to paper tape do:

: DPTOUT —> GENFUN; DCOMP([APA SYSTEM]);
etc,

150) Payt 4: Progvam Library

if you wish to edit [APA SYSTEM] you need only edit the relevant
subsidiary file—say [APASYS4]. Since the new version of [APA SYS4]
has the same name you do not need to alter your master file,

Example 6. The disc file directory and DTIDY. This example shows
how the directory develops, starting from a newly-initialized track.

COMPILE(LIBRARY([LIB EASYFILE));
'TYPE TRACK NUMBER' : 0

: DISCINIT ([94]); -

: DISCDIR =>

** NIL,

DPTIN([APA 1]);

[[APA 1] COMPLETE DISCEND IS NOW 15]
: DPTIN(JAPA 2));

[[APA 2] COMPLETE DISCEND IS NOW 27]
: DISCDIR =>

**TT[APA 215 12] [[APA 1] 10 5]],

: DPTIN(JAPA 1]);

[[APA 1] COMPLETE DISCEND IS NOW 32]

: DISCDIR =>
**TTAPA™1] 27 5] [[APA 2] 15 12] [FREE 10 5]],
: . DTIDY,

[DISCEND IS NOW 27]

: DISCDIR =>

*¥T[TAPA 1] 21 5] [[APA 2] 10 12]],

ADDENDUM TO EASYFILE: THE DISC-
FILING SYSTEM ON WHICH THE
CURRENT LIB EASYFILE IS BASED

Source: R.H.Rae DMIP.

TDescviption. The present MULTIPOP facilities for using the disc as
backing store require the user to know the number of the sector at
which each of his files begins. If many files are being held on disc
this rapidly becomes cumbersome, and some sort of filing scheme
becomes desirable. With [DISCFILE] the user associates a symbolic
title with each of his files and all files are read to disc and accessed
from disc by these symbolic titles. He need not know the file's actual
position on the track.

Facilities are provided for reading a character repeater onto disc

- and giving the resultant file any desired title, for accessing any
existing disc file by its title, for deleting any unwanted file, and for
compacting all existing files as far down a track as possible, hence
freeing as large a single block of disc track as possible for any future
large file.

If the user has more than one track or has permission to read another
user's files, there is a simple switch that enables him to use the same
system for other tracks. However, each track must individually be
under the control of this filing system.

Each track must have a certain area set aside for holding a directory
and other executive information. This area is taken as the first ten
sectors of the track, usually, leaving the full 150 others for holding
files.

gram Library

elevant
[APA SYs4]
ile.

mple shows
zed track.

DISC-

SED

> the disc as
sector at

| on dise
scheme

L symbolic

1 accessed
ile's actual

nto disc

) any

, and for

le, hence

r any future

ead another
se the same
ually be

2 directory
first ten
holding

LIB EASYFILE (151

No check can be made by program to estimate whether there is enough

room on the track to accommodate a new file before the file is read
onto disc. The user must estimate this himself by examining the global
variable DISCEND. Subtracting the value of DISCEND from 160
indicates the numbers of sectors remaining for the next file. If the
user accidentally writes off the end of his track, error 79 will be
called as normal and the offending file will not be added to the user's
directory.

¥ Facilities offered. (1) The facilities are available when LIB EASY-
FILE has been compiled.

(2) To change the track being accessed
DISCTRACK({ tracknumber));

- where (tracknumber) is the number of the track the user wants to

change to.

(3) To read a file onto the disc:
(repeater) —> DISC({title));

where (repeater) is the character repeater function defining the new
file. The file is closed as soon as (repeater) produces TERMIN,

{title) is the name to be associated with this file. It must be a list.
Any existing file already with that title will be deleted.

(4) To access a disc file:

DISC({title));

where (title) is the name, defined when the file was read onto the disc,
of the file required. It must be a list.

The result of a call of DISC will be a character repeater.

Often it is more convenient to create a file character by character
rather than all at once., This can be done by using:

DISCSINK(title));

where (title) is the name the completed file will have.
The result is a character sink.
The file is only created when the final TERMIN is output.

Example. Consider the user wanting to create a file, [FRED], from

the teletype. Then he could use:
VARS DOUT;
: DISCSINK([FRED]) — DOUT;

FUNCTION GOBLUP; VARS CHAR;
: LQ: .CHARIN — CHAR; CHAR. DOUT;
: IF NOT (CHAR=TERMIN) THEN GOTO LQ
: CLOSE
: END
: GOBLUP();

This will read characters from the teletype up to, and including a
TERMIN.
The result would be identical to calling:

CHARIN —> DISC([FRED));

(5) To delete an existing file:

DISCOFF((title));

where (title) is the name of the file to be deleted. This function produces
no result.

152) Part 4: Progvam Library

(6) If files have been deleted, by calling DISCOFF or by using a name
a second time, there will be unused sectors between the files on the
track in question. We want as large a contiguous block of the track
as possible for reading future files onto, so we want to compact the
existing files as far down the track as possible, filling up the gaps left
by deletion.

This is done by calling:

DISCTIDY(); _

This function takes no arguments and produces no results.

It may take an appreciable length of time to be completed.

A system failure, logging off, or exiting from DISCTIDY in any other
way before it has been completed, may prove fatal.

DISCTIDY should be called when, but only when, it is needed.

() Before using the system for the first time, each of the user's
tracks must be initialized. This is done by:

DISCINIT({user track list));
where (user track list) is a list of the track numbers of each of the
user’'s tracks. The ordering is irrelevant.

TErrorvs. H atitle that is not a list is ever the argument of DISC,
error 54 will be called,

If the user attempts to access, via DISC, a file that is not on his current
track, error 57 will be called.

If the user writes off the end of his track, or tries to write a file onto
someone else's track, the usual disc error messages will appear.

7 Identifiers and variables used. All identifiers and variables used
begin either DISC,., or DD,,. All identifiers and variables used have
four or more characters in their name,

(a) Global identifiers all begin DISC... They are:

DISC
The function used to read files to and from disc.
DISCSINK
The function used to create a character sink.
DISCOFF
The function used to delete a file from the user's directory.
DISCTIDY
The function used to compact the user's files.
DISCTRACK
The function used when a change of track is wanted.
DISCINIT
The function used to initialize the system for a user.
DISCDIR .
This variable holds the user's current directory.
DISCEND
This variable holds the number of the sector which will be the start
of the next file added to the directory.
DISCUSER
This variable holds the number of the track currently in use.

None of these identifiers should be the destination of any assignment.

(b) Local variables all begin DD... :

DDEND, DDFUN, DDMP, DDG1 — DDG# are all of type general.
DDFIND, DDTO, DDCOMP, DDF1, DDF2 are all of type function.
These identifiers can be used as the user wishes.

Al

vogram Library

y using a name
 files on the
of the track
compact the
1p the gaps left

ts.
ad,
“in any other

xded.

the user's

f each of the
nt of DISC,
t on his current

ite a file onto
11 appear.

iables used
)les used have

ectory.

ill be the start

in use,

assignment.

neral.
nction.

LIB EASYFILE (153

¥ The dirvectory. Files are accessed via a directory. This directory is

a list that is held both in store and on disc. The copy in store is the
current version of the user's directory and the disc version is just a
copy of this. The store version is dumped to disc whenever a new file
is added or whenever DISCTIDY has been called. Except during a call

‘of DISCTIDY, the version in store is always a correct picture of the

positioning of the user's files. This store version is held in the global

variable DISCDIR. If, however, a user attempts to output a file to a track

which is not his own, his store version of DISCDIR for that track will

get corrupted. Recovery is possible by doing a DTRACK for that track,

The directory is NIL or a list of file entries.

A file entry is a list of three items held as:
[(filetitle) (filestart) (filelengthy |
A (filetitle) is "FREE" or a list.
A (filestart) is UNDEF or an integer not less than 10.
A (filelength) is a non-negative integer.
If (filestart) of a file entry is UNDEF, the (filelength) must be 0.
The directory must be ordered properly, and must contain no gaps.
Roughly, the conditions are: '
If FE(N) is the nth file entry, and the directory contains D entries,
D>0,
filestart(FE(1))+filelength(FE(1))=DISCEND,
filestart(FE(D))=10,
filestart(FE(N+1))+filelength(FE(N+1))=filestart(FE(N))
unless filestart{(FE(N+1))=UNDEF
when filelength(FE(N+1))=0.
A typical directory could look like:
[[[FRED] 42 29][FREE 17 25][[BILL] 15 2][[CHARLIE] UNDEF 0]
[[EDITOR] 10 5]]

¥ Example of the use of the basic facilities. The user, with track 89,
has a paper tape file, [EXAMPLE|, that he wants to read onto disc.
Having done this he compiles the disc file, and finds he has made
some mistakes. He compiles POPEDIT, examines the faulty disc
file, edits it, checks the edited file, and then compiles it. As the
compilation is OK, he changes the name of the file, deletes the redun-
dant file, calls DISCTIDY to clear up his track, and logs off. '
: COMPILE(LIBRARY([LIB EASYFILE)));

: 'TYPE TRACK NUMBER': 89

: COMMENT READ THE PAPER TAPE FILE TO DISC;
POPMESS([PTIN EXAMPLE]) —> DISC([EXAMPLE));

. COMMENT COMPILE THE RESULTING DISC FILE;
: COMPILE (DISC({EXAMPLE)));

COMMENTS [A]

ERROR 47

IN FUNCTION FACT
CULPRIT A
SETPOP:

: COMMENT COMPILE POPEDIT41;
: COMPILE(LIBRARY([LIB POPEDIT)));

: COMMENT PRINT OUT THE OFFENDING DISC FILE;
: DTYPE([EXAMPLE));

154) Part 4: Program Library

FUNCTION SIGMA L;
IF L.NULL THEN 0 ELSE L. HD+SIGMA(TL(L))
CLOSE

END;

FUNCTION FACT N; N*FACT(N-1);
END;

"A"-A;
1,2,3—L;
FACT(A)=>
SIGMA(LIST)=>

: COMMENT EDIT THE DISC FILE;
: POPEDIT(DISC([EXAMPLE], CHARIN, NIL)—>DISC([EDITED
EXAMPLE]);

[READY : TYPE EDIT COMMANDS]

FL END

FE

FC;

IL IF N=0 THEN 1 ELSE
FC)

IS CLOSE

FL. END

FE

1B

VARS A LIST;
2—>A; [%1, 2, 3% }->LIST;

)
: DL1
: DE
: SH

P =

Kk

: COMMENT HAVING DONE THE EDIT, PRINT OUT THE EDITED
FILE;

: DTYPE([EDITED FILE));

ERROR 57

CULPRIT [EDITED FILE]

SETPOP:

: COMMENT MADE A MISTAKE. REALLY WANTED [EDITED
EXAMPLE]. TRY AGAIN;
: DTYPE((EDITED EXAMPLE]);

FUNCTION SIGMA L;
IF L.NULL THEN 0 ELSE L. HD+SIGMA(TL(L))
CLOSE

END;

FUNCTION FACT N;
IF N=0 THEN 1 ELSE N*FACT(N—1) CLOSE;
END;

gram Library LIB EASYFILE (155

' VARS A LIST; |
2—>A;[%1, 2, 3%}—>LIST; |

FACT(A)=>
SIGMA(LIST)=>

: COMMENT AS IT LOOKS O.K. TRY COMPILING IT;
. COMPILE(DISC([EDITED EXAMPLE]);

*k 9
** 6,
COMMENT THIS IS ALRIGHT, BUT THE FILE IS TO BE CALLED

'TED [EXAMPLE];
: DISC([EDITED EXAMPLE])—>DISC((EXAMPLE]);

. COMMENT AS FILES HAVE BEEN DELETED, CALL DISCTIDY TO
CLEAN UP THE TRACK; |
: DISCTIDY(); f

LOGOFF(); - |

. EDITED |

‘
|

156) Part 4: Progrvam Librarvy

CEASYFILE]

VARS DISCDIR DISCEND DISCUSER DDEND DDMP

DISC DISCTIDY DISCOFF DISCSINK;

FUNCTION DDFIND DDG1;VARS DDG2;

IF DDG1.ATOM THEN DDG1,54.ERRFUN EXIT:;DISCDIR->DDG2;

Ls1F DDG2.NULL THENCXDDG1,UNDEF,0X1::DISCDIR->DISCDIR;DISCDIR.HD EXIT;

IF DDG2,HD.HD.ATOM.NOT THEN IF EQUAL(DDG1,DDG2.HD.HD) THEN DDG2.HD EXIT

ELSEIF NOT(DDG2.HD.HD="FREE")THEN DDG2.HD.HD;54.ERRFUN
EXIT;DDG2.TL->DDG2;G0OTO L

END

FUNCTION DDTO DDF1 DDG1:;

VARS DDG2 DDF2;DISCUSER,DDG1.DISCOUT->DDF2;
L:.DDF1->DDG2;DDG2.DDF2; IF DDG2=TERMIN THEN DDF2.DSECTOR ELSE GOTO L CLOSE
END
LAMBDA DDG1 DDG2:;DDG1.DDG2~>DDG1;

IF NOT(DDG4.TL.HD=UNDEF)THEN DISCUSER,DDG1.TL.HD.DISCIN

ELSE DDG1.HD:57.ERRFUN

EXIT
END(XDDF INDX)->DISC;
LAMBDA DDF1;VARS DDG1;CUCHAROUT~>DDG1;DISCUSER,0.DISCOUT=>CUCHAROUT;
"DISCDIR".DDF1;"DISCEND".DDF1;"DISCUSER" .DDF1; TERMIN.CUCHAROUT; DDG1~->CUCHAROUT
END(XLAMBDA DDG1:DDG1.VALOF.PR;"«>",PR;DDG1.PR;";" .PR31.NL ENDX)->DDMP}
LAMBDA CUSTART DISCDUMP DISCWRITE;
VARS NEWSTART CUDIR SAVEDIR FILE1 FILE2 NAME START;

REV(DISCDIR)->CUDIR; CUDIR->SAVEDIR;
Lo:

IF NULL(CUDIR) THEN

ELSE HD(CUDIR)->FILE1;

If HD(FILE1)="FREE" OR HD(TL(FILE1))2UNDEF THEN “FREE"=->FILE1.HD; CUSTART=->FILE1
+TL.HD;
L1; IF NULLC(TL(CUDIR)) THEN TL(REV(SAVEDIR))=>DISCDIR;DISCEND~HD(TL(TL(FILE1)))-
>DISCEND :
ELSE HD(TL(CUDIR))-DFILE2; HD(FILE2)~->NAME; HD(TL(FILE2))=->START;

IF: NAME="FREE" OR START=UNDEF THEN
FILEL,TL.TL.HD+FILE2.TL.TL.HD=>FILE1.TL.TL,HD; TL(TL(CUDIR))=>TL(CUDIR); GOTO L1

ELSE “TIDY1"~->HD(FILEL);
DISCHRITE(DISCIN(DISCUSER,START),CUSTART)=>NEWSTART;
"TIDY2"=>HD(FILE2); CUSTART=>HD(TL(FILE1))}
NEWSTART=CUSTART=>HD(TL(TL(FILEL1)))s NAME->HD(FILEL);
START+HD(TL(TL(FILE2)))-NEWSTART=>HD(TL(TL(FILE2)));
"FREE"=>HD(FILE2); REV(SAVEDIR)=>DISCDIR; DISCDUMP();
NEWSTART=>CUSTART; FILE2->FILE1; TL(CUDIR)=->CUDIR; GOTO L1
CLOSE CLOSE
ELSE TL(CUDIR)->CUDIR{ CUSTART+HD(TL(TL(FILE1)))->CUSTART; GOTO LO
CLOSE : .
CLOSE; DISCDUMP() .
END(% 10,DDMP,DDTO X)->DISCTIDY;
LAMBDA DDG1 DDG2 DDG3;“"FREE"->DDG1.DDG2.HD;.DDG3 END(XDDFIND,DDMP%)->DISCOFF;
LAMBDA DDG1 DDG2 DDG3 DDG4 DDG5;:VARS DDG6;
L:DDG2.DDG3->DDG6;IF NOT(DDG6.TL.HD=UNDEF)THEN DDG2.DDG4;GOTO L CLOSE;
DISCEND->DDG6.TL .HD;DDG1-DISCEND=->DDG6.TL.TL.HD; DDG1~->DISCEND; .DDGS
END(XDDFIND,DISCOFF,DDMP%)~->DDEND;
LAMBDA DDG1 DDG2=>DDG3;IF DDGL.ATOM THEN DDG1.,54.ERRFUN EXIT;
LAMBDA DDG1 DDG2 DDG3 DDG4:
IF DDG2.NOT THEN DISCUSER,DISCEND.DISCOUT->DDG2;DDG2->FROZVAL(1,DDG3)
CLOSE;DDG1.DDG2;
IF DgGl:TERMlN THEN DDG2.DSECTOR.DDG4
CLOS
END(X0,0,DDG2(XDDG1X)%)~>DDG3;DDGI->FROZVAL(2,DDE3)
END (XDDEND%)->DISCSINK;
LAMBDA DDG1 DDG2 DDG3 DDG4;
IF DDG2.ATOM THEN DDG2,54.ERRFUN EXIT;DDG1,DISCEND.DDG3;DDG2.DDG4;
NL{1);PR([XDDG2,"COMPLETE", "DISCEND","IS¥,"NOW",DISCENDX1)sNL(1);
END(XDDTO,DDENDX)->DISC.UPDATER:
FUNCTION DISCTRAC;0.DISCIN.COMPILE: END
FUNCTION DISCINIT DDG1:NIL~>DISCDIR;10->DISCEND;L:IF DDG1.NULL THEN EXIT;
0DG1.HD=->DISCUSER; DISCUSER, TERMIN,DDG1.NEXT->DDG1;0.DISCOUT,APPLY.DISCTRAC
+DISCTIDY;GOTO L
END;
VARS DREC1 DREC2 POPEDIT;

FUNGCTION DREAD FILE;CHARIN=->DISC(FILE):END;

FUNCTION DPTIN FILE;POPMESS(CPTIN 203::FILE)~>DISC(FILE);END;

FUNCTION. DREPIN. FILE INF; INF=>DISC(FILE);END;

FUNCTION DCOPY FILE1 FILE2; DISC(FILE1)->DISC(FILE2);END;

FUNCTION DOUT FILE;VARS OUTF;DISCSINK(FILE)~>0UTF;
LAMBDA. U OUTF; OUTF(U): 1F U=TERMIN THEN NL(1);

PR(CXHD(FILE),"COMPLETE",“DISCEND","IS","NOW",DISCENDX]);NL(1);

CLOSE END(XOUTFX);

END;

CRE#

VARS

FUNC

VARS
IF
ELS

LOOF

CL{
END;

FUN(
VAR
DIt
L0O:
RE!
IF
EL!
CLi
END

LAM!
Fli
IF
EL!
cL:

END

gram Library

HD EXIT;
G2.HD EXIT

GOTO L CLOSE

AROUT ;
3 DDG1->CUCHAROUT
X)=>DDMP;

1D; CUSTART=->FILEL
AD(TL(TL(FILEL))) -
T

TL(CUDIR); GOTO L1

GOTO LO

DMP%)->DISCOFF;

. CLOSE;
.DDGS

_(1,DDG3)

1G4
(1)

THEN EXIT:
'LY.DISCTRAC

INL(1)3

LIB EASYFILE (157

FUNCTION DDIO INF OUTF; VARS U3

L: INF(y=>U30UTF(U); IF USTERMIN THEN EXIT3GOTO L; END:
FUNCTION DTYPE FILE; DDIO(DISC(FILE),CHAROUT);END;
FUNCTION DLP80 FILE; DDIO(DISC(FILE),POPMESS{(CLP8O 201::FILE));ZEND;
FUNCTION DPTOUT FILE;DDIO(DISC(FILE),POPMESS(CPTOUT 203::FILE));END;
VARS FUNCTION (DIN DKILL): DISC=>DIN; DISCOFF->DKILL:
FUNCTION DCOMP FILE; FILE.DISC.COMPILE;NL(1);PR(LXFILE,"COMPILED"X]);END;
FUNCTION DEDIT FILE;HD(DDFIND(FILE))=>DREC1;HD(TL(DDFIND(FILE)))=->DREC2;

IF NOT(EQUAL(FNPROPS(POPEDIT),[POPEDIT])) THEN COMPILE(LIBRARY(LLIB POPEDITI))
; CLOSE;

POPEDIT(DISC(FILE),CHARIN,NIL)=>DISC(FILE)SNL(1):
END;
FUNCTION DFREE N; VARS DDIR DDGsDISCDIR->DDIR;
L: IF DDIR.NULL THEN ‘FILES IN A MESS‘.PR; ,SETPOP;EXIT;
NEXT(DDIR)~>DDIR->DDG;

IF. HD(DDG)="FREE" AND HD(TL(DDG))=N THEN DDG ELSE GOTO L;

CLOSE
END;
FUNCTION DRECOVER FILE: VARS CPILE;

DDFIND(FILE)=>CFILEs IF HD(TL(CFILE))=UNDEF THEN TL(DISCDIR)=->DISCDIR; FALSE-
>CFILE: CLOSE:

IF NOT(ATOM(DREC1))THEN IF EQUAL(DREC1,FILE) THEN FILE->HD(DFREE(DREC2))3
IF CFILE THEN "FREE"->HD(CFILE); CLOSE:;

EXIT? CLOSE:;

NL(1); PR(LCSORRY NOT POSSIBLE TO RECOVERI<>CXFILEX1):NL(1);
END;
FUNCTION DTIDY; .DISCTIDY;UNDEF=->DREC1; UNDEF->DREC2;

PR(L%"DISCEND"”,"NOW",DISCENDX1);NL(1);
END:
FUNCTION DTRACK N; N->DISCUSER:; DISCUSER,DISCTRAC3UNDEF->DREC1; UNDEF->DREC2; EN
D;
LAMBDASVARS U; 1.NL;'TYPE TRACK NUMBER'.PR} CHARIN.INCHARITEM.APPLY=>U3
IFf U THEN U->DISCUSER; DISCUSER.DISCTRACK CLOSE END.APPLY:

[READABLE DISCFILE] (A more readable version of the Discfile part of Easyfile)
VARS DISCDIR DISCEND DISCUSER MAKEFILE UPDEXEC
DISC DISCTIDY DISCOFF DISCSINK;

FUNCTION FINDFILE FILENAME;
VARS SAVEDIR CUFILE;
IF ATOM(FILENAME) THEN ERRFUN(FILENAME,S4)
ELSE DISCDIR->SAVEDIR;
Loop:
IF NULL(SAVEDIR) THEN [X FILENAME,UNDEF,0 %1::DISCDIR->DISCDIR; HD(DISCDIR)
ELSE NEXT(SAVEDIR)->SAVEDIR=>CUFILE;
IF NOT(ATOM(HD(CUFILE))) THEN
IF EQUAL(FILENAME,HD(CUFILE)) THEN CUFILE
EXIT
ELSEIF NOT(HD(CUFILE)="FREE") THEN ERRFUN(HD(CUFILE).54)
EXIT;
GOTO LOOP
CLOSE
CLOSE
END;

FUNCTION TODISC REPEATER STARTSECTOR;
VARS CUCHAR DREPEATER;
LD(I)SCOUT(DISCUSER.STARTSECTOR)-)DREPEATER;
00>

REPEATER()=->CUCHAR; DREPEATER(CUCHAR);

IF CUCHAR=TERMIN THEN DSECTOR(DREPEATER)
ELSE GOTO LOOP

CLOSE

END;

LAMBDA FILENAME FILEFIND;

FILEFIND(FILENAME)=>F ILENAME;

IF NOT(HD(TL(FILENAME))=UNDEF) THEN DISCIN(DISCUSER,HD(TL(FILENAME)))
ELSE ERRFUN(HD(FILENAME)»S57)

CLOSE
END(% FINDFILE %)->DISC;

158) Part 4: Program Library

LAMB0OA DWRITER;

VARS SAVECUCHAROUT;

CUCHARQUT=->SAVECUCHAROUT;

DISCOUT(DISCUSER,0)->CUCHAROUT;

DWRITER("DISCDIR"); DWRITER("DISCEND"); DWRITER("DISCUSER");

CUCHARQUT(TERMIN); SAVECUCHAROUT=>CUCHAROUT

END(X% LAMBDA WORD;
PR(VALOF (WORD)); PR("=>"); PR(WORD); PR(";"); NL(1)
END %)=->UPDEXEC;

LAM30A FILENAME FILEFIND UPDEXEC;
"FREE"->HD(FILEFIND(FILENAME)): UPDEXEC()
END(X FINDFILE,UPDEXEC %)~>DISCOFF;

LAMBDA ENDSECTOR FILENAME FILEFIND UPDEXEC;
VARS CUFILE;

LQO0P:

FILEFIND(FILENAME)=>CUFILE;

IF HD(TL(CUFILE))=UNDEF THEN DISCEND=>HD(TL(CUFILE});
ENDSECTOR~DISCEND->HD(TL(TL(CUFILE))); ENDSECTOR->DISCEND; UPDEXEC()
ELSE DISCOFF(FILENAME); GOTO LOOP
CLOSE
END(X -FINDFILE,UPDEXEC %)=>MAKEFILE;

FUNCTION DISCTRACK:
COMPILE(DISCIN(Q))
END;

LAM3DA FILENAME MAKEFILE;
IF ATOM(FILENAME) THEN ERRFUN(FILENAME,54)
ELSE
LAMBDA CHAR DREPEAT TRACKNO FILEMAKER;
DREPEAT (CHAR) ;
IF CHAR=TERMIN THEN _
IF NOT(TRACKNO=DISCUSER) THEN DISCUSER: DISCTRACK(TRACKNO); ->TRACKNO
CLOSE;
FILEMAKER (DSECTOR(DREPEAT))
IF NOT(TRACKNO=DISCUSER) THEN DISCTRACK(TRACKNO)
CLOSE
CLOSE
END(% DISCOUT(DISCUSER,DISCEND),DISCUSER,MAKEFILE(% FILENAME X) X)
CLOSE
END(% MAKEFILE %)=>DISCSINK;

LAMBDA REPEAT FILENAME ONTODISC MAKEFILE;

IF ATOM(FILENAME) THEN ERRFUN(FILENAME,54)

ELSE MAKEFILE(ONTODISC(REPEAT,DISCEND),FILENAME)
CLOSE
END (% TODlSC,MAKEF[LE %)=>UPDATER(DISC);

LAMBDA CUSTART DISCDUMP DISCHWRITE;
VARS NEWSTART CUDIR SAVEDIR FILE1 FILE2 NAME START;
REV(DISCDIR)->CUDIR; CUDIR=>SAVEDIR;
Lo: ’
IF NULL(CUDIR) THEN
ELSE HD(CUDIR)~>FILEL;
If HD(FILE1)="FREE" OR HD(TL(FILE1))=UNDEF THEN "FREE“=>HD(FILE1); CUSTART=->
HD(TL(FILEL));
L1: IF NULL(TL(CUDIR)) THEN TL(REV(SAVEDIR))->DISCDIR;
DISCEND=-HD(TL(TL(FILE1)))->DISCEND
ELSE HD(TL(CUDIR))=>FILE2; HD(FILE2)->NAME; HD(TL(FILE2))=->START;
. IF NAME="FREE" OR START=UNDEF THEN HD(TL(TL(FILE1)))+HD(TL(TL(FILE2)))
=>HD(TL(TL(FILEL)));
TL(TL(CUDIR))=>TL(CUDIR)Y; GOTO L1
ELSE "TIDY1*=>HD(FILEL);
DISCHRITE(DISCIN(DISCUSER,START),CUSTART)~>NENSTART;
"TIDY2"=>HD(FILE2); CUSTART=>HD(TL(FILE1));
NEWSTART-CUSTART=>HD(TL(TL(FILE1))); NAME~>HD(FILE1);
START+HD(TL(TL(FILE2)))~NEWSTART->HD(TL(TL(FILE2)));
"FREE“~>HD(FILE2); REV(SAVEDIR)=>DISCDIR; DISCDUMP();
NEWSTART->CUSTART; FILE2->FILEL; TL(CUDIR)->CUDIR; GOTO L1
CLOSE
CLOSE
ELSE TL(CUDIR)->CUDIR; CUSTART+HD(TL(TL(FILE1)))=>CUSTART; GOTO LO
CLOSE
CLOSE: DISCDUMP()
END(X 10,UPDEXEC,TODISC %)->DISCTIDY;

rogram Library

3 UPDEXEC()

ACKNO) ; =>TRACKNO

NAME - X) X)

D(FILE1); CUSTART->

2))=>START;
Y+HD(TL(TL(FILE2)))

ART 3

LE1);
RN
MP () 3
R3 GOTO L1

3 GOTO LO

LIB FASYFILE (159

FUNCTION DISCINIT TRACKL1ST;
NIL=>DISCDIR; 10->DISCEND;
LooP:
IF NULL(DISCDIR) THEN RETURN
ELSE HD(TRACKLIST)->DISCUSER;
DISCUSER, TERMIN, TRACKLIST.NEXT->TRACKLIST}
0.DISCOUT.APPLY.DISCTRACK.DISCTIDY;
GOTO LOOP
CLOSE
END;

COMMENT

+WHEN CDISCFILE] IS COMPILED, THE NUMBER OF THE FIRST TRACK THE USER
WANTS TO ACCESS SHOULD BE. ON THE TOP OF THE STACK. IF THIS IS NOT SO,
AN ERROR EXIT WILL OCCUR AT THIS POINT IN THE PROGRAM. THE PROGRAM WILL
BE FULLY USABLE, BUT "DISCUSER" WILL BE UNDEFINED';

->DISCUSER: DISCTRACK(DISCUSER):

160) Payt 4: Progvam Library

' Program name, LIB EQUATIONS ,
. Source. R.J.Popplestone, DMIP; Date of issue. June 1969.

fDescription. This program proirides a simple facility for checking the
manipulation of algebraic expressions. In particular it will check the
solution of a polynomial of one variable.

The user types in an algebraic expression which the program will

store. This may be any POP-2 arithmetic expression containing X as its
free variable, A, B, C, and D as its constants, and any arithmetic
functions or operations. The expression must be terminated by a semi-
colon.

e.g. (X+A)*B =D/3 ;
4+D+C = X*X—3*X ;
X—A*B+5 ;

(I any two signs, e.g., +, ¥, etc., including =, are adjacent, they must be
separated by spaces.)

The user can then manipulate this expression and the program will
state whether he has done so correctly or not.

THow to use the program. The program is compiled by typing:
.COMPILE(LIBRARY([LIB EQUATIONS]));
and is entered by the function EQUATION.

On entry the message 'TYPE EQUATION' is output, and the user must
type SOLVE followed by an algebraic expression of the type given above.
The program now outputs 'TYPE NEXT LINE', and any reduction or
expansion of the initial expression may be input. If it is consistent with
the previous one, the message 'OK. TYPE NEXT LINE' is output and
the user may continue. If however no relationship exists between them,
the message 'MISTAKE. TRY AGAIN' is output and the correct version
should be input.

The man1pulat1on of any expression may be abandoned at any time
either by typing FINISH, which causes an exit from the program, or by
typing SOLVE followed by a new expression.

All legal POP-2 arithmetic operations may be used, and two expressions.

separated by OR may be typed if more than one solution exists. If a
non-legal POP-2 expression is given, the message 'I DO NOT
UNDERSTAND' is output, and the user should re-input the expression
correctly.

fMethod used. The program redefines = and OR to be subtraction and
multiplication respectively. Any constants are given an arbitrary

value and the resulting expression is treated as a lambda expression of
one argument X, The function ZERO finds a solution to the equation, and
the original expression is applied to this solution to give a result which
should not be appreciably different from . If it is, then the expression
is incorrect. If any expression is meaningless, ERRFUN is called, and
due to its redefinition by the program, it causes the message 'I DO NOT
UNDERSTAND' to be output and returns the user to the point at which
he may type in a new expression.

fNotes

1. OR and = are redefined in the program and on premature exit from
the function EQUATION need to be redefined (for example, after control
and G) by typing:

EQS—>NONOP =;

ORR—>NONOP OR ;

Subsequently = and OR are no longer syntax words and can be
redefined at will.

gram Library

+ 1969.

or checking the
ill check the

rram will
ntaining X as its
hmetic

ited by a semi-

, they must be
gram will

typing:

he user must
pe given above.
2duction or
zonsistent with
s output and
between them,
orrect version

any time
ogram, or by

wo expressions
xists, If a
NOT

: expression

btraction and
rbitrary
expression of
e equation, and
a result which
1e expression
is called, and
age 'l DO NOT
int at which

ture exit from
, after control

n be

|

' LIB EQUATIONS (161

9. Certain classes of legal expressions will cause errors in the
program with 'I DO NOT UNDERSTAND' being output. This is usually
due to arithmetic overflow in function ZERO, caused by an attempt to
deal with an equation with no real roots.

) 7Global variables.
ZERON EQS ORR A B C D IDZERO ERF ABS EQUATION
7ZERO STDR STATREAD EQCHECK JUMPEND.

fStore used. The program uses one block of store.

YExample of use

. COMPILE(LIBRARY([LIB EQUATIONS)));

'LIB EQUATION IS READY FOR USE'
.EQUATION;

.'TYPE EQUATION": SOLVE A*(B+(14+X)T(-1)) = D; To manipulate

'TTYPE NEXT LINE" (14X)*A*B+A=D*(1+X) ; a simple
\ 'OK TYPE NEXT LINE": (1+X)(A*B—D)=(—A) ; algebraic
11 DO NOT UNDERSTAND'": (1+X)*(A*B—D)=(—A); expression.
‘ 'OK TYPE NEXT LINE" 1+X = A/(D—A*B); :
1 '0K TYPE NEXT LINE" X=A/(D—A*B) —1;
\ 'OK TYPE NEXT LINE": SOLVE X12+3*X+2=(; To solve

i "TYPE NEXT LINE" X=((—3)+SQRT(9—4%2))/2; a
i 'OK TYPE NEXT LINE":X=(-1.5) +SQRT(1)/2; quadratic
'OK TYPE NEXT LINE " X=1-1.5; equation.
'MISTAKE. TRY AGAIN": X=@. 5—1. 5;
'0OK TYPE NEXT LINE" X=1;
'MISTAKE. TRY AGAIN": X+1=0 ;
'OK TYPE NEXT LINE" X=—2;
'OK TYPE NEXT LINE" X=—2 OR X+1=§ ;
'OK TYPE NEXT LINE': FINISH ;

'EXIT EQUATIONS'

162) - Part 4: Program Library

CEQUATION]

VARS ZERON EQS EPS ORR;
0.01 -> EPS; NONOP OR => ORR ;NONOP = =-> EQS:;

CANCEL = OR
VARS OPERATION 6 = OPERATION 7 OR ;
ORR=>NONOP OR; EGS =-> NONOP = ;

VARS IDZERO ERF ABS EQUATION ZERO STRD STATREAD
JUMPEND ORIGINAL ;

ERRFUN=->ERF;

FUNCTION EQCHECK X; VARS NEWEQ ;
JUMPOUT(LAMBDA F N Z 1.NL;PR(’I DO NOT UNDERSTAND');
Z=>ERRFUN;;END(% ERF X),0)->ERRFUN;
IF- EQ(X.HD,"FINISH") THEN EQS->NONOP = ;ERF~>ERRFUN;
DRR=> NONOP OR ;2.NL3PRC'EXIT EQUATIONS)31.NL;JUMPEND();
CLOSE:
IF EQ(X.HD,"SOLVE") THEN X.TL=->X3;1.NL;PR(¢’ TYPE NEXT LINE‘);
ELSE FALSE
CLOSE->NEWEQ
VARS FUN;POPVAL(CLAMBDA X3J<>X<D>LEND ;3 GOONJ)=~>FUN;
IF NEWEQ THEN FUN=>ORIGINAL3EXIT;1.NL3
If NOT(IDZERO(FUN)) THEN
IF ABS(ORIGINAL(ZERO(FUN)))>=2+EPS
THEN * MISTAKE.TRY AGAIN',.PRZEXIT:
CLOSE;
‘OK TYPE NEXT LINE“.PR;
END? :

FUNCTION EQUATION; VARS X ORIGINAL ;
JUMPOUT(LAMBDA ; END,D)=>JUMPEND;
NONOP = => NONOP =. ; NONOP s => NONOP OR
1.NL;7 TYPE EQUATION'.PR;
L:+STRD->X:EQCHECK(X);GOTO L3

END;

FUNCTION IDZERO F3;
IF EQ(F(0.2),0) AND EQ(O, F(0.4)) AND

EQ(0, F(0.6)) AND EQ(0, F(0.8)) THEN TRUE ELSE FALSE:
CLDSE;
END;

VARS A B C D;
1.5 => A; 2.5 => B: 3.5 => C; 4.5 «> D;

FUNCTION ABS X;

IF X < 0 THEN =X ELSE X CLOSE
END

FUNCTION STATREAD; .STRD END

FUNCTION STRD:
VARS Vi .ITEMREAD -> V; IF EQSC V, "3*) THEN NIL EXIT
V t: STRD()

END

TRUE

gram Librvary

Y

N;
UMPEND () ;

XT LINE*);

e

FALSE;

HIL EXIT

TRUE

———

(163

LIB EQUATIONS
VARS ZERON; 10 => ZERON; '

FUNCTION ZERO F:
VARS U1 U2 N; ZERON => N; =1 => Ul; 1 =-> U2;

LO: IF EQSC N, 0) THEN UNDEF EXIT;
IF ABS(U1-U2) < EPS THEN U1l EXIT
IF EQ(C F(U2),F(UL)) THEN (U1+U2)/2
ELSE (U1 » F(U2) - U2 & F(U1))/ (F(U2) - F(U1))
CLOSE;, U1l => U2; => U1;
N -1 ->N; GOTO LO
END;

2.NL; ‘EQUATIONS READY FOR USE‘.PR; 2.NL;

164) Part 4: Progvam Library

Progrvam name. LIB FOR Source. R.J.Popplestone, DMIP.; Date
of issue. June 1969

Descviption
This package provides FOR statements in POP-2, their syntax being :
{for spec) ::= (variable), {(expression) |
{variable}, (expression) WITH (for spec)

(for statement) :;= FOR (for spec) DO (statement *) REPEAT
e.g. FOR X, [1 2 3] WITH Y, [t 2 3] DO

SUM(X, Y) REPEAT; |
The (expression) must evaluate to a sequence (see below). The WITH
statement has the same effect as nested FOR loops.

THow to use the progvam. The program should be compiled by typing:
COMPILE(LIBRARY([LIB FORY)));
All the FOR statement facilities may then be used in the user's program.

Note: When using a program containing FOR statements, LIB FOR must
be input BEFORE any such statements are mentioned.

The {expression) of the FOR statement must be one of three forms:

(a) a list, whose elements will be the successive values of the
{variable)

(b) a repeater function, which will produce successively each value of
the (variable), and TERMIN as the terminator.

{c) a record whose data-word is SEQ and whose components are
SEQFUNOF and SEQPROPSOF. This is produced by the function
STEP.

STEP (X, Y, Z) is used to construct a SEQ record of a sequence
starting at X in steps (positive or negative) of Y, until Z;

e.g. FOR X,STEP(1, 1,5) DO PRINT(X T 2) REPEAT;

will cause the squares of 1 through 5 to be output. FOR X, [1 2 3 4 5]
DO PRINT (X72) REPEAT; has the same effect, as does

FOR X, F DO PRINT(XT2) REPEAT; where F is defined as
FUNCTION F;

IF N<6 THEN N; N + 1—>N EXIT;

TERMIN

END;

1—>N;

Sequences in the form of SEQ records or lists can be used as many
times as required, in different places, and simultaneously; they can be
handed on as parameters of functions and given as results. For example,
if all indexing in a program was from one to eight, then the sequence
STEP (1, 1, 8)—>ONEEIGHT; or [1 2 3 4 5 6 7 81->ONEEIGHT; could be
set up globally, and ONEEIGHT used as the {expression) in all FOR
statements in the program.

Note. . FOR statements may not appear at execute level, as they use
labels and GOTO statements,

fMethod used. The basic words of the package, FOR, WITH, DO,
REPEAT, are all defined as macros.

The function REPEATEROF is applied to the {expression) and a repeater
function is created (if necessary) and assigned to a variable whose

name is invented by the function NEWNAME, and declared by the FOR
statement apparatus.

gyvam Library

MIP.; Date

yntax being :

EAT

. The WITH

led by typing:

user's program.

LIB FOR must

ee forms:
of the

each value of

nts are
the function

(uence

[12345]

5

d as many

; they can be

5. For example,
e sequence
HT; could be

n all FOR

S they use

'H, DO,

and a repeater
le whose
by the FOR

T

A loop is created in which this repeater function is applied to no
arguments, the result assigned to the {variable), and a test planted to see
whether it is equal to TERMIN. At the REPEAT a GOTO statement to
close the loop, and a label as the destination of the GOTO statement in
the test for TERMIN, are planted. :

fGlobal variables .

SEQFUNOF STEPFUN CONSSEQ SEQPROPS NEWNAME FORFUN
REPEATEROF STEP SEQPROPSOF FOR DO WITH REPEAT FORLIST
NAMCOUNT.

fStore used
Approximately 2 blocks of store are used by the package.

LIB FOR (165

YExample of use
: COMPILE(LIBRARY([LIB FOR)));
: FUNCTION TEST;
: VARSX Y;
FOR X, STEP(1, 1, 3) WITH Y, [5 6 7]DO
PR(X); PR(Y); NL(1);
: REPEAT,; '
: END;

. TEST();

LWWLWNDNDNKF =
SOOI =IO

. FUNCTION SUM SEQ;
. VARS TOT U;
#—> TOT;
FOR U, SEQ DO TOT+U—> TOT REPEAT;
. TOT
: END;
: SUM([23 24 45])=>
* % 92,
: SUM(STEP(17,—1,1))=>
x% 153,

. STEP(L, 1, 18)—>X;
. SIJBJ()()::>

kK 55’
. SUM(X)+SUM([1 2 3)=>

%%k 61,

166) Part 4: Progvam Library
CFORJ

VARS SEQFUNOF STEPFUN CONSSEQ SEQPROPS NEWNAME
FORFUN REPEATEROF STEP SEQPROPSOF ;

VARS FORLIST; NIL => FORLIST:

VARS NAMCOUNT; 0 =-> NAMCOUNT;

FUNCTION NEWNAME;

NAMCOUNT//10//10//10//10//10//10, 33, 8.CONSWORD;
NAMCOUNT + 1 -> NAMCOUNT

END
MACRO FOR:

VARS L; .NEWNAME -> L:

C%X.ITEMREAD, L, L%]) :: FORLIST -> FORLIST;
END

FUNCTION FORFUN W; -
VARS NLAB NVAR; .NEWNAME => NLAB; .NEWNAME -> NVAR;

MACRESULTS(L% “;", “VARS", NVAR, ";",
".m, “REPEATEROF", "=>", NVAR,
";"» NLAB, “:i", “.", NVAR, “=>%, FORLIST.HD.HD, ";",
“IF", FORLIST.HD.HD, “=v, “TERMIN*, “THEN",
"G0TO", FORLIST.HD.TL.HD, "CLOSE", n;» %1);

IF NOT(W = "DO") THEN .ITEMREAD -> FORLIST.HD.HD CLOSE;
NLAB => FORLIST.HD.TL.HD
END

MACRO DO;
FORFUN("DO")
END

MACRO WITH; FORFUN("WITH") END

MACRO REPEAT;
MACRESULTS(CX%
"+", “GOTO", FORLIST.HD.TL.HD, FORLIST.HD.TL.TL.HD, *:* X3):

FORLIST.TL => FORLIST
END

FUNCTION REPEATEROF X;
IF X.ISFUNC THEN X EXIT
IF X ATOM THEN
IF X = NIL THEN LAMBDA ; TERMIN END RETURN
ELSEIF X.ISCOMPND AND X.DATAWORD = "SEQ"
THEN X.SEQFUNOF.APPLY RETURN
ELSE ‘WRONG FOR SEQ* => X.PR;.SETPOP
CLOSE
ELSE LAMBDA XREF;
VARS U; XREF.CONT =-> U;
IF U.NULL THEN TERMIN EX1T;
U.DEST => XREF.CONT
END (% CONSREF(X) %)
CLOSE
‘END

END

FUN

END

REC

oram Library

D.HD, "3,

LOSE;

«HD, ":" X1);

LIB FOR (167

FUNCTION STEP X Y Z;
CONSSEQ(STEPFUN(%X,Y»Z, IF Y > 0 THEN NONOP > ELSE NONOP < CLOSEX) .,

[%"STEP", X, Y, Z%1)
END

FUNCTION STEPFUN X Y Z COMP;
LAMBDA XREF Y Z COMP;
IF COMP(XREF.CONT, Z) THEN TERMIN EXIT
XREF.CONT; XREF.CONT+Y => XREF.CONT
END(XCONSREF(X),Y,Z,COMPX)
END

RECORDFNS("SEQ", CO 01) =-> SEQOPROPSOF -> SEOFUNDF; .ERASE: -> CONSSEQ:

\

168) Part 4: Progvam Library

Progvam name. LIB FOURS
Source. D.J.S.PullinDMIP; Date of issue. June 1969

fDescription. FOURS is a game of three-dimensional noughts and
crosses, played on a 4 X 4 X 4 board. The program plays a game
against the user, requesting moves, automatically replying, and dis-
playing the board whenever it is the user's turn to play.

fHow to use the program. The program should be compiled by typing:
COMPILE(LIBRARY([LIB FOURS)));

The program asks a couple of questions of the user. These should be
answered by either YES or NO and terminated with carriage-return/
line-feed. A full explanation of the game, and how to play against the
program, is output if required. -

fMethod used. The program evaluates all sequences of forcing moves,
and if any leads to a win, either plays it or blocks it. If there is no
winning sequence it selects the position which minimizes the opponent's
free lines and maximizes its own, ignoring the forcing positions which
have already been rejected. More weight is given to opponent's lines
than its own, and to long lines than short ones. No lookahead is used in
the non-forcing case.

A HELP facility is provided, and for this the program performs the
above operations for the user instead of for itself.

-

ogvam Library

39

ughts and
yS a game
g, and dis-

iled by typing:

se should be
age-return/
against the

forcing moves,
here is no

the opponent's
sitions which
nent's lines
ead is used in

rforms the

T

LIB FOURS

(169

CFOURS]

FUNCTION PLAY;

VARS MYLIST FORCEMOVES LINES POINTS OWNER LENGTHS USEDPTS
BOARD A1 LINENO THISLINE COUNT1 COUNT2 X3 X2 COUNT3 X1
A3 A2 COUNT SCALE RANSEED
FORMLINES GETSPACE MOVEVALUE VALUES RANDOM
TESTFORCE FREEPT FINDL UNMOVE UNWRAP MOVEIT HISMOVE
PRINTBOARD MYITEMREAD NICEPR OCHAROUT CUCHAROUT;

FUNCTION SETUP;VARS X3
INIT(64)=>BOARD; INIT(64)->USEDPTS;
INIT(76)->LENGTHS; INIT(76)=>0WNER;
INIT(64)->POINTS; 76->X:
L1: 4->SUBSCR(X,LENGTHS); 0->SUBSCR(X,OWNER);
IF X<65 THEN
INIT(B)=>SUBSCR(X,POINTS); 1->SUBSCR(X,USEDPTS)
3 0->SUBSCR(X,BOARD)
CLOSE;
X=1->X; IF X>0 THEN GOTO L1 CLOSE:
INIT(76)=->LINES; .FORMLINES;
NIL=>FORCEMOVES; 0->MYLIST:
END;

FUNCTION MOVE X A B; VARS T UV W Y Z;
SUSSCR(X,POINTS)=DY;1->Z;FALSE->U;
IF B THEN .GETSPACE->T;
CLOSE:
L1l: SUBSCR(Z,Y)=>W;
IF W<0 THEN
IF B THEN T;X CLOSE:
0=->SUBSCR(X,USEDPTS);
U
EXIT; .
SUBSCR(W,LENGTHS)=>V;
IF B THEN V+SUBSCR(W,0OWNER)=>SUBSCR(Z,T) CLOSE:
IF SUBSCR(W,0WNER)=0 THEN
IF v=0 THEN GOTO L2 CLOSE;
A->SUBSCR(W,0WNER); 3->SURSCR(W,LENGTHS);
ELSEIF SUBSCR(W,OWNER)=A THEN
V=-1~>SUBSCR(HW,LENGTHS) ;
IF v=1 THEN TRUE->U CLOSE;
ELSE 0=->SUBSCR(W,0WNER); 0->SUBSCR(W,LENGTHS);
CLOSE;
L2: Z+1->Z; GOTO L1;
END;

FUNCTION LINEFORM; VARS Y Z;
4->COUNT1; INIT(4)->THISLINE;

L1: X+1->SUBSCR(COUNT1,THISLINE);
SUSSCR(X+1,USEDPTS)=->Y; SUBSCR(X+1,POINTS)=->Z;
LINENO=>SUBSCR(Y,Z); ~-1->SUBSCR(Y+1,7):
Y+1=>SUBSCR(X+1,USEDPTS); X+A1->X;
COUNT1=-1=>COUNT1; IF COUNT1>0 THEN GOTOD L1 CLOSE:
THISLINE->SUBSCR(LINENO,LINES);

LINENO+1->L INENO

END;

FUNCTION GETSPACE;
IF MYLIST=0 THEN INIT(8)
ELSE MYLIST; SUBSCR(8,MYLIST)->MYLIST
CLOSE

END?

FUNCTION FREESPACE X;
MYLIST->SUBSCR(B,X); X=>MYLIST;
END;

170) Part 4: Program Library
FUNCTION FORMLINES: FUNCTI!
1->A1;4->A2; 16->A3; 1->LINENO; 0-5X
| Ll: 0->X; 1->X1: 4->COUNT3; L4: FI
! Lo X=>X2: X->X3; IF X:
L2: 4->COUNT2; IF Si
L3: LINEFORM; TRUE
X2+A2=->X2; X.FR
X2->X3COUNT2-1->COUNT2; L2: MO
IF COUNT2>0 THEN GOTO L3 CLOSE; L3: FII
1 X3+A3=>X3;X3->X2;X3=>X;COUNT3-1->COUNT3; IF 2
IF COUNT3>0 THEN GOTO L2 CLOSE; IF
IF X1>0 THEN X1-1->X1;A33A2;A1;A2+A1;)
A3=>A2->A1;0->X;G0OTO L5 £l
CLOSE; 1F
IF X1=0 THEN X1-1->X1; ->X;A1-X-X->A1:X:
IF A1>0 THEN A1->X CL
ELSE =A1->A1:3=>X; ')
CLOSE: TG0
GOTO L5 CLOSE;
CLOSE; 1F .
=>A3 =D>A1 ->A2; Lti: .U
C IF A1>1 THEN GOTO L1 CLOSE; IF F
i 0->X;21->A1; LINEFORM; FA
; : 3->X3;19->A1; .LINEFORM; CLOSE:
12->X; 13->A1; .LINEFORM; GOTO
15->X311->A1; .LINEFORM; END;
1->%;
L4: 1->SURSCR(X,USEDPTS);
X+1=>X31F X<6% THEN GOTO L4 CLOSE: FUNCTI
; END; 1->8
i sugs
i Li: SV
: IF v
VR
LOGA
LOGA
. U+i-
FUNCTION TESTMOVES;VARS X A B C D P1 P2; END;
FINDL(1,0)->X;
IF NOT(x=0) THEN
L4: X.FREFPT->A; FUNCTI
IF SUBSCR(A,OWNER)=8 THEN A EXIT; L1: .U
FINDL(1,X)=>B; X33F
IF NOT(B=0) THEN R->X;GOTO L4 CLOSE;
IF FORCEMOVES.NULL THEN
L3 A
i EXIT; IF NI
IF AzHD(FORCEMOVES) THEN GOTO LO CLOSE; TRU%
NIL->FORCEMOVES;GOTO LS END;
CLOSE; !
IF NOT(NULL(FORCEMOVES)) THEN
L0: HD(FORCEMOVES); TL(FORCEMOVES)->FORCEMOVES;
SXIT; FUNCTI
8=->P1; 16->P2; L1:Fx;
IF .TESTFORCE THEN GOTO L0 CLOSE; éoro
i P1;P2->P1; ->P2; END;
s IF .TESTFORCE THEN HD(FORCEMOVES); NIL->FORCEMOVES; EXIT; '
INTOF (SCALE+ .RANDOM)=>COUNT; COUNT->COUNT1:
IF SCALE>4 THEN SCALE//2->SCALE->X;
‘ CLOSE: | FUNCTI
: -1000000->X; .VALUES; 1->D;) ‘ 0=->Y
I Li: IF D=65 THEN C EXIT; { Li: IF
\ IF SUBSCR(D,USEDPTS)=0 THEN GOTO L2 CLOSE: : IF
B MOVEVALUE(D,Y,Z,V,W)=->B; i EL
IF B>X THEN | cL
COUNT1->COUNT; ! ELSE
L3: B8=>X; D->C; IF
ELSEIF B=X THEN EL
IF COUNT>1 THEN COUNT-1->COUNT;GOTO L3 CLOSF; cL
) CLOSE; l cLOS
i L2: D+1->D; GOTO L1 P Xel
! END; ‘ | END;

ryam Library

EXIT:

LIB FOURS (171

FUNCTION TESTFORCE; VARS X W FIRST;
0->X;
L4: FINDL(2,X)=>X;

IF X=0 THEN FALSE EXIT;

[F SUBSCR(X,OWNER)=P2 THEN GOTO L4 CLOSE;

TRUE=->FIRST;

X.FREEPT=->Y ->HW;

L2: MOVE(W,PL1,TRUE)->V; MOVE(Y,P2,TRUE)=>V;
L3: FINDL(1,0)->Z;

IF Z>0 THEN -
IF SUBSCR(Z,OWNER)=P1 THEN Z.FREEPT::NIL->FORCEMOVES; .UNWRAP; EXIT;
MOVE(Z.FREEPT,P1,TRUE)=>V;
FINDL(1,0)=->V;

IF v=0 OR SUBSCR(V,OWNER)=P2 THEN
.UNMOVE; GOTO L1:
- \CLOSE:-
MOVE (V.FREEPT,P2, TRUE)=>V;
GOTO -L3; -
CLOSE: : .

IF .TESTFORCE THEN .UNWRAP EXIT;

Ll: LUNMOVE; ->Y;Y.UNMOVE; IF NOT(Y=W) THEN GOTO L1 CLOSE;

IF FIRST THEN
FALSE=>FIRST; X.FREEPT=>W=>Y; GOTO L2

CLOSE:

GOTO L4

END;

FUNCTION UNMOVE T X; VARS Z U V W;
1=>SUBSCR(X,USEDPTS);
SUBSCR(X,POINTS)=>Z; 1->U;

L1: SUBSCR(U,Z)=>V;

IF V<o THEN FREESPACE(T); EXIT:;
SUBSCR(U,T)=>W;
LOGAND(W,7)=>SUBSCR(V,LENGTHS);
LOGAND(W,24)->SUBSCR(V:O0WNER);
U+1=>U; GOTO L1

END;

FUNCTION UNWRAP:
L1: LUNMOVE; =>X; X.UNMOVE;
i tFORCEMOVES~>FORCEMOVES;

IF NOT(X=W) THEN GOTO L1 CLOSE;
TRUE
END;

FUNCTION FINDL Y X;

L1: X+1=->X; IF X=77 THEN 0 EXIT;
IF SUBSCR(X,LENGTHS)=Y THEN X EXIT;
GOTO L1

END;

FUNCTION VALUES; VARS X:
0=>Y30->Z;0->V;0=>W;1->X;
L1: IF SUBSCR(X,LENGTHS)=2 THEN
IF SUBSCR(X,OWNER)=P2 THEN Y+1->Y
ELSE Z+1->27
CLOSE
ELSEIF SUBSCR(X,LENGTHS)=3 THEN
IF SUBSCR(X,O0WNER)=P2 THEN V+1->V
ELSE W+1->W
CLOSE
CLOSE
éN X+1=->X; IF X<77 THEN GOTO L1 CLOSE:
D;

172) Part 4: Program Libvary

FUNCTION MOVEVALUE X A B C D; VARS W Y Z;
SUBSCR(X,POINTS)->X; 1->Z3
L1: SUBSCR(Z.X)=D>W;
[F W<0 THEN C-10#D+100%#A-1000+B EXIT;
SUBSCR(W,LENGTHS)=->Y;
IF Y=4 THEN C+1->C
ELSEIF Y=3 THEN
IF SUBSCR(W,OWNER)=P2 THEN A+1->A ELSE D-1->D CLOSE
ELSEIF Y=2 THEN
IF SUBSCR(W,0WNER)=P1 THEN B-1->B CLOSE
CLOSE;
Z+1->Z; GOTO L1;
END;

FUNCTION FREEPT X;VARS Y Z;
1->Y; SUBSCR(X,LINES)->X3:

L1: SUBSCR(Y,X)=>Z3;

1F SUBSCR(Z,USEDPTS)=1 THEN Z CLOSE;
Y+1->Y; IF Y<5 THEN GOTO L1 CLOSE;
END;

FUNCTION MOVEIT X;MOVE(X»8,FALSE);

8->SUBSCR(X,BOARD);

(((X-1) //4) //4) .PR; .PR;} .PR; .PRINTBOARD: 10.NL;
END;

FUNCTION HISMOVE; VARS L M N;
LO: PR(‘YOUR MOVE');
L1: MYITEMREAD->L; IF L= "RESIGN" THEN L EXIT;
IFf L= "HELP" THEN
If NOT(NULL(FORCEMOVES)) THEN
PR(‘]1 CAN WIN NO MATTER WHAT YOU DO.‘);
GOTO LO
CLOSE:
FINDL(1,0)=>L;IF L>0 THEN L.FREEPT->C;GOTO L8 CLOSE;
16->P1;8->P2;
IF .TESTFORCE THEN
LENGTH(FORCEMOVES)~>M; HD(FORCEMOVES)=>N;
PR(’YOU CAN FORCE A WIN IN');PR(M);
PR(‘ MOVES, STARTING AT');

L5: (((N=1) //4) //4) .PR; .PR; .PR;
1.NL; NIL->FORCEMOVES; GOTO LO
CLOSE:

P1; P2->P1; ->P2;
IF .TESTFORCE THEN
HD(FORCEMOVES)=>N;
PR(‘] AM IN A STRONG POSITION. HOWEVER, TRY');
GOTO L5
CLOSE:
-1000000->X: .VALUES; 1->D;
L6: IF D=65 THEN
L8: PR({‘TRY'); (((C=1) //4) //4) .PR; .PR; .PR;
1.NL; GOTO LO
CLOSE:
IF SUBRSCR(D,USEDPTS)=0 THEN GOTO L7 CLOSE;
MOVEVALUE(D,Y,Z,V,H)->B;
IF 8>X THEN B->X;D=>C CLOSE;
L7: D+1->D; GOTO L6
CLOSE:
IF NOT(ISNUMBER(L)) THEN GOTO L1 CLOSE;
IF L<D OR L>3 THEN
L2: PR(‘NO SUCH POSITION. PLEASE RETYPE.‘);
GOTO LO;
CLOSE;

ogvam Library LIB FOURS (173

L3: .MYITEMREAD->M;
IF NQT(ISNUMBER(M)) THEN GOTO L3 CLOSE;
If MC0 OR M>3 THEN GOTO L2 CLOSE:;
L4: MYITEMREAD=->N;
IF NOT(ISNUMBER(N)) THEN GOTO L4 CLOSE:;
IF N<CO OR N>3 THEN GOTO L2 CLOSE:;
16l +4uMeN+1=DL
0SE 1F NOT(SUBSCR(L,BOARD)=0) THEN
PR(’THAT POSITION IS ALREADY OCCUPIED, STOP
TRYING TO CHEAT.);
GOTO LO
CLOSE}
MOVE(L,16,FALSE);
16=>SUBSCR(L,BOARD);
END;

FUNCTION PRINTBOARD; VARS X Y Z:
2.NL; 5.SP;0.PR;8.SP;1.PR;8.5P;2.PR;8.SP;3.PR;
2.NL; 4->X;
L1: 2.8P;0.PR;1.PR;2.PR:3.PRiX=1=>X;1F X>0 THEN GOTO L1 CLOSE:
0->Y;1=>Z;
L2t 1.NL;Y.PR:4=DX:4=DK;
L3: 1.SP;
IF SUBSCR(Z,BOARD)=0 THEN PR(".")
ELSEIF SUBSCR(Z,BOARD)=16 THEN PR("X")
ELSE PR("0")
CLOSE;
Z+1=>Z; X=1->X;
L IF X>0 THEN GOTO L3 CLDOSE:
W=1=>W3
IF W>0 THEN 4->X;2+12->7Z:2.5P3GOTO L3 CLOSE:
Y+i->Y; ‘
I[F Y<4 THEN Z2-48->7;GOTO L2 CLOSE:;
2.NL; ‘
END;

| FUNCTION MYITEMREAD; 1
APPLY (INCHARITEM(CHARIN));

END;
FUNCTION NICEPR X; i
OSE; i
CLOSE IF X=23 OR X=32 THEN EXIT; \
X.0CHAROUT h
END} ‘

|
i CUCHAROUT=->0CHAROUT; f
| NICEPR=>CUCHAROUT; |
| ,;SETUPS INTOF (100+HD(POPDATE())) -=>RANSEED; [
L1: 1.NL; w
! PR(‘DO YOU KNOW HOW TO PLAY AGAINST THIS PROGRAM);
; .MYITEMREAD->X;

IF X= “YES" THEN GOTO L3 CLOSE; L
L2: PR(‘THE GAME IS PLAYED ON A 4w4s4 CUBE, THE OBJECT ‘(

j BEING TO PLACE 4 PIECES IN A STRAIGHT LINE. YOUR

| PICCES ARE SHOWN AS X , MINE AS. 0 . TO MAKE A

MOVE YOU HAVE TO TYPE IN 3 NUMBERS, INDICATING

PLANE, ROW AND COLUMN; EACH. IN THE RANGE 0 TO 3.

THUS IN THE BOARD SHOWN BELOW, YOU HAVE A PIECE ’

‘ AT 1 3 2 AND I HAVE ONE AT 2 0 3.%); !
16->SUBSCR(31,B0ARD); 8->SUBSCR(36,BO0ARD): ‘
.PRINTBOARD;

0=->SUBSCR(31,B0ARD);0->SUBSCR(36,B0ARD);

*YOU CAN ASK THE COMPUTER TD SUGGEST A MOVE BY TYPING HELP

AND CAN CONCEDE DEFEAT BY TYPING RESIGN

‘' LPR:
| L3: /DO YOU WANT TO START 1

* LPR;
.MYITEMREAD->X; .PRINTBOARD; ‘
IF X= "YES" THEN 16->SCALE;GOTO L4 ELSE 8=>SCALE;GOTO L& CLOSE; w

174) Part 4: Progvam Library i ‘

L4: HISMOVE=->X;
IF X= "RESIGN" THEN P
IF NULL (FORCEMOVES) THEN So
PR(’I HAD NOT REALISED THAT MY POSITION WAS IMPREGNABLE.
) ELSE PR(’FAIR ENOUGH. ‘)
CLOSE; L
GOTO LS m,
CLOSE; j in
IF X THEN .PRINTBOARD;PR(‘YDU WIN. *);GOTD L5 CLOSE; : pr
L6: 1.NL;PR(’MY MOVE‘); .TESTMOVES;
IF .MOVEIT THEN 1.NL;PR(’I WIN. ‘);GOTO L5 CLOSE; (
GOTO L4: j (a
L5: PR(’DO YOU WANT TO PLAY AGAIN‘); " st
MYITEMREAD->X; \
IF X= "YES" THEN .SETUP;GOTO L3 CLOSE; |
PR(‘BACK TO POP2 THEN');
END; of

ERASE->CUCHAROUT;
COMPILE(LIBRARY(LLIR RANDOMI1));
CHAROUT->CUCHAROUT ; wi
4.NL;

PR(‘TO ENTER PROGRAM , TYPE FOURS; (1

A) ;
VARS OPERATION 1 FOURS; th
PLAY->NQNOP FOURS; (4

