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Gene Regulatory
Networks

Gene4Gene2Gene1 Gene3

CREs

regulation via cis regulatory elements (CREs)
promoter, TATA box, motifs, modules

8-15 bp in length, action often at the ends

CREs CREs CREs

central dogma: one gene one protein

cis regulation
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trans regulation (direct) via gene products

Gene4Gene2Gene1 Gene3

transcription factor
protein

translation

up or down regulate mRNA expression

mRNA

transcription

Gene Regulatory
Networks
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trans regulation (indirect) via post-translational modification

Gene4Gene2Gene1 Gene3

transcription factor
protein

translation

up or down regulate mRNA expression

mRNA

Gene4Gene2Gene1 Gene3

transcription factor
protein

kinase
protein phosphorylation

protein

transcription factor
protein

up or down regulate mRNA expression

transcription

Gene Regulatory
Networks
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many other network actions

Gene4Gene2Gene1 Gene3

transcription factor
protein

translation

up or down regulate mRNA expression

mRNA

Gene4Gene2Gene1 Gene3

transcription factor
protein

kinase
protein phosphorylation

protein

transcription factor
protein

up or down regulate mRNA expression

transcription

post-transcriptional regulation (e.g., alternate splicing)

μRNA (e.g., functional RNA, RNAi and gene silencing)

but all are forms of co-regulation

Gene Regulatory
Networks
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Currently Awash in a Sea of 
Transcriptomic Data

An organism’s mRNA transcripts:
• link between the genome, the proteome and the cellular phenotype

• data quality and richness increasing
- noise reduction
- more conditions
- correlation, putative coregulation, regulatory networks

• cannot see post-translational modifications (e.g., phosphorylation)

• huge range of prokaryotic and eukaryotic data coming on line

• timely confluence of technologies

• proteomics, metabolomics data not far behind
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A Major Computational
Bottleneck: Clique

Data transformation:
• representing biological networks with graphs is well understood

• genes (via transcripts, probesets) are denoted by vertices

• edges denote significant gene-gene correlations

• we seek genesets with common regulatory mechanisms

• thus we want to identify dense subgraphs, in particular cliques

- complete subgraphs

- special case of subgraph isomorphism

- NP-complete to decide

- NP-complete even to approximate

K4
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Clique

COMPLEXITY THEORY
Problem Classification
Algorithm Selection 

GRAPH ALGORITHMS
Modeling

Optimization

PARALLELISM AND GRIDS
Speedup

Collaboration

RECONFIGURATION
Hardware Acceleration

Fast Prototyping

Intellectual
Property

Available
Technologies

Tools and Technologies
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Clique

COMPLEXITY THEORY
FIXED-PARAMETER

TRACTABILITY

GRAPH ALGORITHMS 

PARALLELISM AND GRIDS

RECONFIGURATION 

Intellectual
Property

Available
Technologies

Tools and Technologies

Clique
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The Classic View:

P NP PSPACEΣ 2
P … …

“easy”

A Little Complexity Theory
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The Classic View: 

P NP PSPACEΣ 2
P … …

“easy”

“hard”

A Little Complexity Theory
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The Classic View:

P NP PSPACEΣ 2
P … …

“easy”

“hard”

“fuggettaboutit”

A Little Complexity Theory
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Fixed-Parameter
Tractability

Pioneering approach going back twenty years
– Well-Quasi-Order theory
– nonuniform measure of complexity
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Pioneering approach going back twenty years
– Well-Quasi-Order theory
– nonuniform measure of complexity

Exploit knowledge of the solution space
– Consider an algorithm with a time bound such as O(2kn).
– And now one with a time bound more like O(2kn).
– Both are exponential in parameter value(s).
– But what happens when k is fixed?
– Fixed-Parameter Tractable (FPT) iff O(f(k)nc)
– Confines superpolynomial behavior to the parameter

Fixed-Parameter
Tractability
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Hence, the Parameterized View:

FPT … …W[1] W[2] XP

“solvable”
(even if 
NP-hard!)

Complexity Theory, Refined
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The Parameterized View:

FPT … …W[1] W[2] XP

“solvable”
(even if 
NP-hard!)

“heuristics only”

Complexity Theory, Refined
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The Parameterized View:

FPT … …W[1] W[2] XP

“solvable”
(even if 
NP-hard!)

“heuristics only”

“fuggettaboutit”

Complexity Theory, Refined
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Clique

COMPLEXITY THEORY
FIXED-PARAMETER

TRACTABILITY

GRAPH ALGORITHMS 
VERTEX
COVER

PARALLELISM AND GRIDS

RECONFIGURATION 

Intellectual
Property

Available
Technologies

Tools and Technologies
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The Vertex Cover Project

Pioneering approach going back twenty years
– Well-Quasi-Order theory
– nonuniform measure of complexity

Exploit knowledge of the solution space
– Consider an algorithm with a time bound such as O(2kn).
– And now one with a time bound more like O(2kn).
– Both are exponential in parameter value(s).
– But what happens when k is fixed?
– Fixed-Parameter Tractable (FPT) iff O(f(k)nc)
– Confines superpolynomial behavior to the parameter

Duality
– We solve vertex cover, clique’s complementary dual
– O(1.2759kk1.5+kn) time

Key features
– Kernelization, branching and interleaving

G G 
_
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• use preprocessing via degree 
structures
–Low degree rules 
–High degree rule
–Resultant graph has size O(k2) 

[at most k(1+k/3) vertices]

The Vertex Cover Project
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• use preprocessing via degree 
structures

• then kernelize to reduce to a 
computational core
–suite of codes

The Vertex Cover Project
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• use preprocessing via degree 
structures

• then kernelize to reduce to a 
computational core
–suite of codes
–LP variants

minimize: Σ Xi, i in V(G)
subject to: Xu+Xv>=1 for all uv in E(G)
where: Xi >=0 for all i in V(G)

The Vertex Cover Project
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• use preprocessing via degree 
structures

• then kernelize to reduce to a 
computational core
–suite of codes
–LP variants
–crown rule Rest of graph

… …

…

A crown of width 3

Rest of graph

… …

…

A crown of width 1

A crown of 
width one.

A crown of 
width three.

The Vertex Cover Project
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3926300.07Crown Rule

39262240.53Network Flow
38961669.49LP

Parameter (k’)Kernel (n’)Run TimeAlgorithm

Preprocessing completed first.  All times in seconds.

Representative
Kernelization Results
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3926300.07Crown Rule

39262240.53Network Flow
38961669.49LP

Parameter (k’)Kernel (n’)Run TimeAlgorithm

Preprocessing completed first.  All times in seconds.

Some conclusions:
• Perform preprocessing, then the crown rule.
• If dense, stop trying to kernelize.
• If sparse, try LP or network flow before stopping.

Representative
Kernelization Results
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• use preprocessing via degree 
structures

• then kernelize to reduce to a 
computational core

• employ branching to explore 
the core
–exhaustive search
–highly parallel

The Vertex Cover Project
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• use preprocessing via degree 
structures

• then kernelize to reduce to a 
computational core

• employ branching to explore 
the core

• finally, interleave all three

The Vertex Cover Project



34ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF TENNESSEE

NZIMA
Napier
2008

Clique

COMPLEXITY THEORY
FIXED-PARAMETER

TRACTABILITY

GRAPH ALGORITHMS 
VERTEX
COVER

PARALLELISM AND GRIDS
SSH, CONDOR,

NETSOLVE, BIG IRON

RECONFIGURATION 

Intellectual
Property

Available
Technologies

Tools and Technologies
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Middleware
(NetSolve)

Foundational Fabric
(Switches and Depots)

Compute Resources
(Grid Service Clusters)

NetSolve
Client

NetSolve
Agent Distributed

Storage

NetSolve
Servers

Key: NetSolve’s
program description 
file facility

Sample Grid Architecture
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High Performance Implementations
• suites of maximum/maximal/bi/para clique methods
• have processed graphs with over 3M vertices
• memory often a limiting factor
• currently working on out-of-core methods

SGI Altix supercomputer at ORNL
256 dual-CPU processors, two terabytes of shared memory

Supercomputer Platforms
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Clique

COMPLEXITY THEORY
FIXED-PARAMETER

TRACTABILITY

GRAPH ALGORITHMS 
VERTEX
COVER

PARALLELISM AND GRIDS
SSH, CONDOR,

NETSOLVE, BIG IRON

RECONFIGURATION 
FIELD PROGRAMMABLE

GATE ARRAYS

Intellectual
Property

Available
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With current implementations, we are able to solve 
sub-instances:

• of size 512 or less, 
• with speedups north of about 125.

Algorithms are very 
different.

VHDL versus C.

I/O is often the most 
critical resource.

Hardware Acceleration

Sample FPGA
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Clique

COMPLEXITY THEORY
FIXED-PARAMETER

TRACTABILITY

GRAPH ALGORITHMS 
VERTEX
COVER

PARALLELISM AND GRIDS
SSH, CONDOR,

NETSOLVE, BIG IRON

RECONFIGURATION 
FIELD PROGRAMMABLE

GATE ARRAYS

Intellectual
Property

Available
Technologies

Put the Pieces Together
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A Clique Compute Engine
Preprocessing

and
Kernelization

Branching
and

Interleaving

Works well with synthetic data.
But with real data, dynamic workload balancing 

is required. And that can be very tricky!

Distilled Genesets,
Models and 

Testable Hypotheses

Parametric Tuning, 
Decomposition and Refinement

Highly Parallel Computation

PE PE PE

PE PE PE

FPGA FPGA FPGA

Reconfigurable
Technology

. . . 

Recalcitrant 
Subproblem

PE

. . . . . .. . . . . .
. . . . . .. . . . . .

. . . 

Input
Graph

Cliques for
Post-Processing

Prioritized by GO,
CREs, pathways,

literature, etc

Transcriptomic Context
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Splitter

Job Scheduler

Initialize Branching

Handle Machine

Job List

Handle Machine

Handle Machine

Branching

ssh

Open
Socket

Processor 1

Processor N

. . .

. . .

A simple mechanism.
(Sometimes too simple.)

Workload Balancing:
A Vertex Cover Driver

Processor 2

Branching

Branching
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Pruning is
needed at 

processor 4.

1 2 3 4

…… ……

Processor 1
is still active.

Processor 2
is still active.

Processor 3
is still active.

Send a subtree to 
the job queue.

Workload Balancing:
Distributed Subtree Splitting
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82 minutes

Not needed

Parallel 
Branching

141 
minutes

7 seconds

Sequential 
Branching

20 minutes

Not needed

Dynamic 
Decomposition

34 seconds

34 seconds

Sequential 
Kernelization

2043

2044

398

399

Cover 
Size

No

Yes

Instance 
Type

2466SH3-10

2466SH3-10

839SH2-5

839SH2-5

Graph 
Size

Graph 
Name

So clique size is 422. A direct assault ~ 2466422.

Sample Results on
Protein Sequence Data
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So clique size is 422. The hardest computations.

Sample Results on
Protein Sequence Data
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82 minutes

Not needed

Parallel 
Branching

6+ days

~ 5 days

141 
minutes

7 seconds

Sequential 
Branching

20 minutes

Not needed

Dynamic 
Decomposition

203 minutes

203 minutes

34 seconds

34 seconds

Sequential 
Kernelization

2043

2044

398

399

Cover 
Size

No

Yes

No

Yes

Instance 
Type

2466SH3-10

2466SH3-10

839SH2-5

839SH2-5

Graph 
Size

Graph 
Name

So clique size is 422. The hardest computations.

Sample Results on
Protein Sequence Data
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6+ days

~ 5 days

82 minutes

Not needed

Parallel 
Branching

6+ days

~ 5 days

141 
minutes

7 seconds

Sequential 
Branching

20 minutes

Not needed

Dynamic 
Decomposition

203 minutes

203 minutes

34 seconds

34 seconds

Sequential 
Kernelization

2043

2044

398

399

Cover 
Size

No

Yes

No

Yes

Instance 
Type

2466SH3-10

2466SH3-10

839SH2-5

839SH2-5

Graph 
Size

Graph 
Name

So clique size is 422. The hardest computations. 32 PEs @ 500MHz.      

Sample Results on
Protein Sequence Data
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6+ days

~ 5 days

82 minutes

Not needed

Parallel 
Branching

6+ days

~ 5 days

141 
minutes

7 seconds

Sequential 
Branching

620 minutes

140 minutes

20 minutes

Not needed

Dynamic 
Decomposition

203 minutes

203 minutes

34 seconds

34 seconds

Sequential 
Kernelization

2043

2044

398

399

Cover 
Size

No

Yes

No

Yes

Instance 
Type

2466SH3-10

2466SH3-10

839SH2-5

839SH2-5

Graph 
Size

Graph 
Name

So clique size is 422. The hardest computations. 32 PEs @ 500MHz.      Load balancing is critical.
“No” is harder than “yes.”

Sample Results on
Protein Sequence Data
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6+ days

~ 5 days

82 minutes

Not needed

Parallel 
Branching

6+ days

~ 5 days

141 
minutes

7 seconds

Sequential 
Branching

620 minutes

140 minutes

20 minutes

Not needed

Dynamic 
Decomposition

203 minutes

203 minutes

34 seconds

34 seconds

Sequential 
Kernelization

2043

2044

398

399

Cover 
Size

No

Yes

No

Yes

Instance 
Type

2466SH3-10

2466SH3-10

839SH2-5

839SH2-5

Graph 
Size

Graph 
Name

We now routinely solve these sorts of instances in seconds. But these are not genome scale problems!

Sample Results on
Protein Sequence Data
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency

Branching still requires serious computation
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency

Branching still requires serious computation

Interleaving is indispensible in practice
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency

Branching still requires serious computation

Interleaving is indispensible in practice

Solve problems directly (clique not vertex cover)
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency

Branching still requires serious computation

Interleaving is indispensible in practice

Solve problems directly (clique not vertex cover)

Better subtree pruning via iterated preprocessing
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A Bit of Blasphemy:
The Real Power of FPT

Guides our thinking, steering us to exploit parameters

Kernelization sets the stage for efficiency

Branching still requires serious computation

Interleaving is indispensible in practice

Solve problems directly (clique not vertex cover)

Better subtree pruning via iterated preprocessing

Examples: Common Neighbor Preprocessing (CNP)

Color Preprocessing (CP)
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A Bit of Blasphemy:
The Real Power of FPT

Representative Computational Results
Common Neighbor Preprocessing versus Color Preprocessing

TimeKernel Size

CP
CNP+CP

CNP

Method

Data Source: Gerling Affymetrix 430A
read time 0:40, probe sets 22690, threshold edges 7,534,598, maximum clique size 248
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A Bit of Blasphemy:
The Real Power of FPT

Representative Computational Results
Common Neighbor Preprocessing versus Color Preprocessing

TimeKernel Size

585k1700CP
576k1692CNP+CP

2785k5896CNP
EdgesVertices

Method

Data Source: Gerling Affymetrix 430A
read time 0:40, probe sets 22690, threshold edges 7,534,598, maximum clique size 248
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A Bit of Blasphemy:
The Real Power of FPT

Representative Computational Results
Common Neighbor Preprocessing versus Color Preprocessing

TimeKernel Size

1:22585k1700CP
3:46576k1692CNP+CP

2:242785k5896CNP
PreprocessEdgesVertices

Method

Data Source: Gerling Affymetrix 430A
read time 0:40, probe sets 22690, threshold edges 7,534,598, maximum clique size 248
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A Bit of Blasphemy:
The Real Power of FPT

Representative Computational Results
Common Neighbor Preprocessing versus Color Preprocessing

TimeKernel Size

4:041:22585k1700CP
3:463:46576k1692CNP+CP

51:542:242785k5896CNP
BranchPreprocessEdgesVertices

Method

Data Source: Gerling Affymetrix 430A
read time 0:40, probe sets 22690, threshold edges 7,534,598, maximum clique size 248
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A Bit of Blasphemy:
The Real Power of FPT

Representative Computational Results
Common Neighbor Preprocessing versus Color Preprocessing

TimeKernel Size

5:264:041:22585k1700CP
6:583:463:46576k1692CNP+CP

54:1851:542:242785k5896CNP
TotalBranchPreprocessEdgesVertices

Method

Data Source: Gerling Affymetrix 430A
read time 0:40, probe sets 22690, threshold edges 7,534,598, maximum clique size 248
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Outline of Talk

Sample Application

Tools and Technologies
Complexity Theory

Graph Algorithms

High Performance Computation

Reconfigurable Computation

Compute Engine

Problem Variants
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Maximal Clique

Biological Fidelity
Genes are Pleiotropic

Maximal Cliques May Overlap
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Maximal Clique

Biological Fidelity
Genes are Pleiotropic

Maximal Cliques May Overlap

Results
Efficiency

Predictable Range of Outputs
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Maximal Clique

Biological Fidelity
Genes are Pleiotropic

Maximal Cliques May Overlap

Results
Efficiency

Predictable Range of Outputs

Keys
Global Shared Memory Map

Bitmapped Implementations

Synchronization and Load Balancing
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Maximal Clique
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Near Linear Speedup

Significant Memory
Requirements
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Biclique

Concentrate on Bipartite Graphs

Previous Algorithms Make Unwarranted Assumptions

Bookkeeping

Branch & Bound

Ontological Discovery

Genes Phenotypes
gene1

gene3

trait1

gene4 trait3

trait2

trait4

trait5

gene2

gene6

gene7

gene5
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Observed Biclique Runtimes
2 ~ 3 orders of magnitude faster than the best previous alternative

Time Complexity: O(dn2B), where d is maximum degree and B is the number of maximal bicliques.
Keys: preprocess and exploit structure. Sound familiar?

Biclique
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Discretionary Power
We can now explore much denser graphs, as shown by edge weights.
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Paraclique

• Clique gloms onto highly 
connected vertices.

• Here a 280-clique is 
transformed into a
466-paraclique.

• Edge density remains 
north of about 95%.

• Lift and separate.

279

280-clique

279

279

466-paraclique
. . 

.

. . 
.

. . .
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Geeks Я Us


