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Systems Biology

« How do biological entities function in unison and at
all levels of scale?

e Linkage, communication and networks (graphs!)
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Napier Foundations
2008

Systems Biology

1

Correlation

Log Signal

Here are five mouse genes
with Pearson correlations
of at least 0.65. What of

* noise?

» experimental design?

e circadian rhythms?

e other confounds?

e other metrics?

Mouse/Treatment

w 5
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Foundations

Systems Biology

Correlation
Coefficient Profiles

Sometimes via

e Pearson

e« Spearman

 Mutual Information
e Etc

Other times we need

* p-values

 Bonferroni corrections
e g-values

o false discovery rates...
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Foundations

Systems Biology

Correlation

Omics: key to deciphering complex systems
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Correlation

Omics: key to deciphering complex systems
Humans: 1013+ cells, 200+ cell types
Genome (blueprint, 20K+ genes, 10M+ polymorphisms)
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Systems Biology

Correlation

Omics: key to deciphering complex systems
Humans: 1013+ cells, 200+ cell types
Genome (blueprint, 20K+ genes, 10M+ polymorphisms)

Proteome (functional units, unknown # of proteins)
Transcriptome

Translation (tRNA) via transcription (mMRNA)
Function and Signaling (siRNA, miRNA, etc)
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Systems Biology

Correlation

Omics: key to deciphering complex systems

Humans: 1013+ cells, 200+ cell types
Genome (blueprint, 20K+ genes, 10M+ polymorphisms)
Proteome (functional units, unknown # of proteins)
Transcriptome
Translation (tRNA) via transcription (mRNA)
Function and Signaling (siRNA, miRNA, etc)
Other: metabalome, lipidome, interactome, omeome!
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Foundations

Systems Biology
Correlation
omics

Visualization
- highly dependent on scale
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Systems Biology
Correlation
omics

Visualization
- highly dependent i
on scale :
- the only omics often
seen Is a “rediculome”
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Foundations

Systems Biology
Correlation
omics

Visualization

Computational Tools - focus usually on dense subgraphs
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Foundations

Systems Biology
Correlation
Omics
Visualization

Computational Tools
Maximum Clique
e must run often
e time is a limiting factor
» exploit fixed-parameter tractability (FPT)
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Foundations

Systems Biology
Correlation
Omics
Visualization

Computational Tools
Maximum Clique
Maximal Clique
* huge outputs
e various orderings
* memory is often the limiting factor

Iy 17 ornl
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Foundations

Systems Biology
Correlation
Omics
Visualization

Computational Tools

Maximum Clique
Maximal Clique
Biclique
* new algorithms
 bipartite graphs

w 18
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Systems Biology
Correlation
Omics
Visualization

Computational Tools

Maximum Clique
Maximal Clique
Biclique
Paraclique

* NOISy data

ur 19 ornl
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NZIMA

Naper Coexpression Analysis

i cDNA or mRNA Microarrays | Raw Data
Toolchain [+
Normalization ' Gene Expression Profiles

/ Correlation Computation Real-Valued Matrix

k-Means Principal Component Graph
Clusterin . Analysis ) "7 (¢ Transforms
/ Edge-Weighted Complete Graph

High-Pass Filtering

Unweighted Incomplete Graph ( Maximum } FPT VC
..... __ Clique Codes

f . \
[k—Cores} [k-Connected} [ HCS } lique-Centri__——> M(;)i:r:sl }
" 1Components) * “[Subgraphs "~ " "’ Methods :
Biclique } HPC &

_ > Novel
> : Methods

N

Increasing Edge Density
(and Increasing Problem Complexity)
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NZIMA

Naper Coexpression Analysis

Gene (vertex) comparisons:
o differential expression
 does not require multiple conditions
« compare the two lists of gene expression levels
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NZIMA

Naper Coexpression Analysis

G

Correlate (edge) comparisons
« differential correlation
* requires multiple conditions in control versus stimulus
« compare two lists of gene-gene correlations




NZIMA

Napier Coexpression Analysis

Putative network (cligue) comparisons

* differential topology
» compare cliques, sort by ontology, CRES, etc
 consider granularity, for example, with the clique intersection graph
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NZIMA

Napier Coexpression Analysis

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19X
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1500 - D6Mit150
1250 -
Seven
1000 - Quantative
Trait Loci
750
500 - D2Mit200 D11Mit99
Mtap D10Mitd2
D10Mit186 S14Gnf051.890 D190it13
250 -
Transcript
0 abundance
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 can be the
T phenotype!
There’s a high probability that somewhere in here is a polymorphism controlling this trait.
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| | Nzaopoigr Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
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Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
Proteomic Data (e. g., amino acid peaks from mass spec)
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NZIMA

Naper Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
Proteomic Data (e. g., amino acid peaks from mass spec)
Transcriptomic Data (e.g., gene expression from parrays)
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NZIMA

Napier Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
Proteomic Data (e. g., amino acid peaks from mass spec)

Transcriptomic Data (e.d., gene expression from parrays)
Genotypic Data: SNPs

* DNA sequence variations, each occurring 44 . , A
. . . c G 2
when a single nucleotide in the genome To . 8
. . A
differs between members of a species y Ll g

* highly conserved throughout evolution and within population
« almost always just two alleles

e detected with SNP arrays designed to detect polymorphisms

ur 31 ornl
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Data Integration

Data Integration

Protein Peak
Factors

MRNA
Co-expression
Network

Multi-Locus
Genetic
Regulatory
Network Models

Natural Allelic
Perturbations

(SNPs)

Putative
Biomarkers

ar

Protein-Gene
Relationships

32
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NZIMA

Napier Application, Human Health

Data Description
» GOteborg, Sweden: 56 patients and 39 controls
o Affymetrix HU133 arrays
 roughly 33,000 genes
* hay fever, eczema
* nasal secretions, lymphocytes, skin
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NZIMA

Napier Application, Human Health

Data Description
» GOteborg, Sweden: 56 patients and 39 controls
o Affymetrix HU133 arrays
 roughly 33,000 genes
 hay fever, eczema
» nasal secretions, lymphocytes, skin

Preprocessing
« MAS5.0
* log transformed
 centered around zero with z scores
 probesets with consistently low expression levels removed
o replicates averaged

ur 35 ornl
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NZIMA

Napier Application, Human Health

Data Description
» GOteborg, Sweden, 56 patients and 39 controls
o Affymetrix HU133 arrays
 roughly 33,000 genes
 hay fever, eczema
» nasal secretions, lymphocytes, skin

Preprocessing
« MAS5.0
* log transformed
» centered around zero with z scores
» probesets with consistently low expression levels removed
* replicates averaged

Threshold Selection
» chosen to balance graph densities
* AFFX spots retained for quality control

ur 36 ornl
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NZIMA

Napier Application, Human Health

Frequency
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Correlation Coefficient Distribution
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NZIMA

Napier Application, Human Health
2008
Graph Properties
Control
Threshold Vertices Edges Maximal Cliques Maximum Size
0.88 8009 256346 240146378 84
0.89 7169 178144 15067064 79
0.90 6254 118900 1579041 71
0.91 5317 75541 243232 66
0.92 4415 45471 51315 59
ribosomal or RNA-related
Patient
Threshold Vertices Edges Maximal Cliques Maximum Size
0.88 5809 91152 2298595 61
0.89 4999 62271 447176 52
0.90 4146 40933 114030 45
0.91 3405 26031 41605 35
0.92 2628 11322 11322 28
T-lymphocytes or epithelial cells
38
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2008

Napier Application, Human Health

Clique profiles using the five most highly represented genes:

Control Patient
Gene Symbol Cligue membership | Gene Symbol Cligue membership
UBE1C 29% FGFR2 66%
RANBP6 27% NFIB 65%
DKFZP5640123 26% PPL 64%
SLC25A13 24% FGFR3 64%
GTPBP4 21% CDH3 56%
39




NZIMA
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Application, Human Health

Clique profiles using the five most highly represented genes:

Control Patient
Gene Symbol Cliqgue membership | Gene Symbol Cligue membership
UBE1C 29% FGFR2 66%
RANBP6 27% NFIB 65%
DKFZP5640123 26% PPL 64%
SLC25A13 24% FGFR3 64%
GTPBP4 21% CDH3 56%

Of course gene representation is only a small part of the story.

ar
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NZIMA

Napier Application, Human Health

We can use traditional algorithmic tools
e extract cores, cliques and other dense subgraphs
» check for scale-freeness, putative TFs, hubs, etc

ur 41 ornl
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NZIMA

Napier Application, Human Health

G

We can use traditional algorithmic tools
e extract cores, cliques and other dense subgraphs
» check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

e sort subgraphs by ontological enrichment, CRES, etc

e compare to literature, databases, etc

 match genes and gene products with known interactions
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We can use traditional algorithmic tools
e extract cores, cliques and other dense subgraphs
» check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

e sort subgraphs by ontological enrichment, CRES, etc

e compare to literature, databases, etc

 match genes and gene products with known interactions

It’'s tempting to scan for your favorites...
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G

We can use traditional algorithmic tools
e extract cores, cliques and other dense subgraphs
» check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

e sort subgraphs by ontological enrichment, CRES, etc

e compare to literature, databases, etc

 match genes and gene products with known interactions

It’'s tempting to scan for your favorites...

But our goal is to identify altered interactions
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NZIMA

Napier Application, Human Health

Differential Analysis
Gene (vertex) comparisons:

« differential expression

 does not require multiple conditions

« compare the two lists of gene expression levels
Correlate (edge) comparisons

» differential correlation

* requires multiple conditions in control, in dose

« compare the two lists of gene-gene correlations
Putative network (clique) comparisons

» differential topology

 focus on network aka clique differences

» consider the clique intersection graph
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NZIMA

Napier Application, Human Health

Differential Analysis LT LT

Gene (vertex) comparisons:

« differential expression

 does not require multiple conditions

« compare the two lists of gene expression levels
Correlate (edge) comparisons

« differential correlation

* requires multiple conditions in control, in dose

e compare the two lists of gene-gene correlations
Putative network (clique) comparisons

» differential topology

 focus on network aka clique differences

 consider the clique intersection graph

Ongoing Work
* 62 genes pass all three screens, 6 match a known pathway
 ITK (IL2-inducible T-cell kinase), studying in depth...moving to lllumina
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Napier Application, Human Health

Differential Analysis LT LT

Gene (vertex) comparisons:

« differential expression

 does not require multiple conditions

« compare the two lists of gene expression levels
Correlate (edge) comparisons

« differential correlation

* requires multiple conditions in control, in dose

e compare the two lists of gene-gene correlations ‘
Putative network (clique) comparisons g ses

» differential topology

 focus on network aka clique differences

 consider the clique intersection graph

Ongoing Work
* 62 genes pass all three screens, 6 match a known pathway
 ITK (IL2-inducible T-cell kinase), studying in depth...moving to Illumina
For Impact

e concentrate on real data, and working with bench biologists
* Sstrategic publications (e.g., Nature Genetics, PLoS Comp Bio, etc)
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Protein Complex Prediction

Protein-Protein Peptidase activity complex

Interaction Network
i /w@ yeast

5 Lo
A?i i RDE‘:(?;)I

@ protein
complexes

—— edge deleted
edge added

Protein binding complex
w ELECTRICAL ENGINEERING & COMPUTER SCIENCE 49
UNIVERSITY OF TENNESSEE
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Protein Complex Prediction

Protein-Protein Peptidase activity complex

Interaction Network
. B
"—_E—“\ R103 /W@ yeaSt
N sy ‘/ proteins
= oK

protein
complexes

—— edge deleted

@ @ @ @ edge added
50 Protein binding complexoml
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NZIMA

Napier Protein Complex Prediction

Computational Experience
e algorithms studied by Guo, Niedermeier, Damaschke, others
e synthetic graphs
 known edit distances

e Various sizes, densities and distances

ELECTRICAL ENGINEERING & COMPUTER SCIENCE 51 m1
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Runtimes (seconds)

NZIMA

2008

Napier  Protein Complex Prediction

Computational Experience

e non-monotonic behavior
e importance of interleaving

e benefits of refinement

1.E+04 - - - -
—e— Basic Branching without Interleaving
1.E+03} —=— Basic Branching with Interleaving
—— Refined Branching without Interleavin
1E+02F _«_ Refined Branching with Interleavin
1.E+01}
1.E+00}
<
1.E-01t
1.E-021
1.E-03
16 (No) 17 (No) 18 (No) 19 (No) 20 (20) 21 (21/20)

22 (21/20)

1.E+
—+—Refined Branching without Interleaving

1.E+05 _« Refined Branching with Interleaving

l.E+O/

1.E+03
1.E+0R2

1 E+01///

1.E+
36 (No) 37 (No) 38 (No) 39 (No) 40 (40) 41 (40) 42 (40) 43 (40)

Edit distance tried (found)

ar
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NZIMA

Naper Protein Complex Prediction

Nice application, but best methods still too slow

1.E+06

27+ hours —»

20 vertices
60 edit distance

Log (Runtime in Seconds)

Edit Distance Tried

No instances Yes instances
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Application to Model Organisms
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NZIMA

Napier Application, Model Organisms

Gregor Mendel, 1822-1884

pea experiments

e green vs :i%%%
« round vs wrinkly v @O OO
@ O O O

e inheritance, dominant and recessive traits (alleles)
e monogenetic phenotypes

e very “lucky”

ELECTRICAL ENGINEERING & COMPUTER SCIENCE 55 m1
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NZIMA

Napier Application, Model Organisms

i

@
 green vs yellow wr ()

«round vs wrinkly ™ Q)

e inheritance, dominance, monogenetic phenotypes

e but most traits appear to be “complex” (polygenetic)

 many allelic combinations convey evolutionary (dis)advantage
e simple rules of Mendelian inheritance do not apply

* need a measure of independence: Linkage Disequilibrium (LD)

ELECTRICAL ENGINEERING & COMPUTER SCIENCE 56 m1
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NZ%pC;Sr Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
* non-random association of alleles at two or more loci
 the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies
* not necessarily on the same chromosome

157 57 ornl
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NZ%pJSr Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
e non-random association of alleles at two or more loci
 the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies
* not necessarily on the same chromosome

Reflects biologically meaningful association of loci
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NZIMA

NZ%";Sr Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
e non-random association of alleles at two or more loci
 the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies
* not necessarily on the same chromosome

Reflects biologically meaningful association of loci

Generally a result of population history
 population genealogy
e recombination frequency
» co-adaptive allele selection
 natural selection
* other factors
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NZIMA

“;%Sr Application, Model Organisms

Evaluation of Mus musculus breeding strategies

Standard Inbred (SI)
Recombinant Inbred (RI)
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Solution: Use SNPs, correlation, paraclique and proximity



NZIMA

Napier Application, Model Organisms

Number of LD Networks Chromosome Coverage
1400
g 67s! woor mlchrs m2chrs 3 chrs
c
% 1200 —x%—89BXD & 1000 | = Standard Inbred mdchrs m5chrs  m6chrs
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NZIMA

Napier Application, Model Organisms

Example of Contrasting
Paraclique Profiles

rs1347955

rs630347

(5366012 Standard

Recombinant seng Inbred
rs13479569
Inbred rs1347957

rs366616
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Collaborators

Research Scientists (Incomplete!):

Mikael Benson
Elissa Chesler
Frank Dehne
Mike Fellows
lvan Gerling
Dan Goldowitz
Malak Kotb
Mark Ragan
Arnold Saxton
Brynn Voy
Rob Williams
Bing Zhang
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Current Students:
Bhavesh Borate
Patricia Carey
John Eblen
Jeremy Jay
Zuopan Li
Sudhir Naswa
Andy Perkins
Vivek Philip
Charles Phillips
Gary Rogers
Jon Scharft
Yun Zhang
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