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Foundations

Systems Biology

• How do biological entities function in unison and at
all levels of scale?

• Linkage, communication and networks (graphs!)



5ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF TENNESSEE

NZIMA
Napier
2008

Foundations

Systems Biology

Correlation

Here are five mouse genes
with Pearson correlations 
of at least 0.65. What of

• noise?
• experimental design?
• circadian rhythms?
• other confounds?
• other metrics?
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Foundations

Systems Biology

Correlation
Coefficient Profiles
Sometimes via
• Pearson
• Spearman
• Mutual Information
• Etc

Other times we need
• p-values
• Bonferroni corrections
• q-values
• false discovery rates...
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Omics: key to deciphering complex systems
Humans: 1013+ cells, 200+ cell types
Genome (blueprint, 20K+ genes, 10M+ polymorphisms)
Proteome (functional units, unknown # of proteins)
Transcriptome

Translation (tRNA) via transcription (mRNA)
Function and Signaling (siRNA, miRNA, etc)
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Foundations

Systems Biology

Correlation

Omics: key to deciphering complex systems
Humans: 1013+ cells, 200+ cell types
Genome (blueprint, 20K+ genes, 10M+ polymorphisms)
Proteome (functional units, unknown # of proteins)
Transcriptome

Translation (tRNA) via transcription (mRNA)
Function and Signaling (siRNA, miRNA, etc)

Other: metabalome, lipidome, interactome, omeome!
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Foundations

Systems Biology

Correlation

Omics

Visualization
- highly dependent on scale
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Foundations

Systems Biology

Correlation

Omics

Visualization
- highly dependent
on scale

- the only omics often
seen is a “rediculome”
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Foundations

Systems Biology

Correlation

Omics

Visualization

Computational Tools - focus usually on dense subgraphs
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Foundations

Systems Biology

Correlation

Omics

Visualization

Computational Tools
Maximum Clique

• must run often
• time is a limiting factor
• exploit fixed-parameter tractability (FPT)
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Foundations

Systems Biology

Correlation

Omics

Visualization

Computational Tools
Maximum Clique
Maximal Clique

• huge outputs
• various orderings
• memory is often the limiting factor 
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Foundations

Systems Biology

Correlation

Omics

Visualization

Computational Tools
Maximum Clique
Maximal Clique
Biclique

• new algorithms
• bipartite graphs
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Foundations

Systems Biology

Correlation

Omics

Visualization

Computational Tools
Maximum Clique
Maximal Clique
Biclique
Paraclique

• noisy data
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Coexpression Analysis

Raw Data

Gene Expression Profiles

Edge-Weighted Complete Graph

cDNA or mRNA MicroarrayscDNA or mRNA Microarrays

Correlation ComputationCorrelation Computation

High-Pass FilteringHigh-Pass Filtering

NormalizationNormalization

Real-Valued Matrix

Graph 
Transforms

Graph 
Transforms

Unweighted Incomplete Graph

Clique-Centric
Methods

k-Cores k-Connected
Components

Principal Component 
Analysis

Principal Component 
Analysis

k-Means
Clustering
k-Means

Clustering
… . . . . . . . .

Paraclique

. . . . . . .
Maximal
Clique

Maximum
Clique

...Increasing Edge Density
(and Increasing Problem Complexity)

NP-complete
Problems

Unsupervised 
Methods

Biclique
.
.
.

HCS
Subgraphs. .

.  .  .  .  .
FPT VC
Codes

HPC &
Novel

Methods

Toolchain
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Coexpression Analysis

Gene (vertex) comparisons:
• differential expression
• does not require multiple conditions 
• compare the two lists of gene expression levels



23ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF TENNESSEE

NZIMA
Napier
2008

Coexpression Analysis

Correlate (edge) comparisons
• differential correlation
• requires multiple conditions in control versus stimulus
• compare two lists of gene-gene correlations



24ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF TENNESSEE

NZIMA
Napier
2008

Coexpression Analysis

Putative network (clique) comparisons
• differential topology
• compare cliques, sort by ontology, CREs, etc
• consider granularity, for example, with the clique intersection graph
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Coexpression Analysis

Seven
Quantative
Trait Loci

There’s a high probability that somewhere in here is a polymorphism controlling this trait.

Transcript
abundance 
can be the 
phenotype!
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Coexpression Analysis

Concentrated Parental Alleles

Two
Paracliques
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Phenotypic Data (e. g., diseased versus healthy patients)
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Proteomic Data (e. g., amino acid peaks from mass spec)
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Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
Proteomic Data (e. g., amino acid peaks from mass spec)
Transcriptomic Data (e.g., gene expression from µarrays)
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Data Integration

Phenotypic Data (e. g., diseased versus healthy patients)
Proteomic Data (e. g., amino acid peaks from mass spec)
Transcriptomic Data (e.g., gene expression from µarrays)
Genotypic Data: SNPs

• DNA sequence variations, each occurring
when a single nucleotide in the genome
differs between members of a species

• highly conserved throughout evolution and within population 

• almost always just two alleles

• detected with SNP arrays designed to detect polymorphisms
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Data Integration

Proteins

A
T

TC
CG

TCA
CGT

AGC
TGT

mRNA 
Co-expression

Network

Multi-Locus
Genetic 

Regulatory
Network Models

Natural Allelic 
Perturbations

(SNPs)

Protein-Gene
Relationships

Proteins

Proteins

Protein Peak
Factors

T/C

C/G

A/T

G/G

C/T
Putative

Biomarkers

Diseased

Healthy

Data Integration
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Application, Human Health

Data Description
• Göteborg, Sweden: 56 patients and 39 controls
• Affymetrix HU133 arrays
• roughly 33,000 genes
• hay fever, eczema
• nasal secretions, lymphocytes, skin
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Data Description
• Göteborg, Sweden: 56 patients and 39 controls
• Affymetrix HU133 arrays
• roughly 33,000 genes
• hay fever, eczema
• nasal secretions, lymphocytes, skin

Preprocessing
• MAS5.0
• log transformed
• centered around zero with z scores
• probesets with consistently low expression levels removed
• replicates averaged

Application, Human Health
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Data Description
• Göteborg, Sweden, 56 patients and 39 controls
• Affymetrix HU133 arrays
• roughly 33,000 genes
• hay fever, eczema
• nasal secretions, lymphocytes, skin

Preprocessing
• MAS5.0
• log transformed
• centered around zero with z scores
• probesets with consistently low expression levels removed
• replicates averaged

Threshold Selection
• chosen to balance graph densities
• AFFX spots retained for quality control

Application, Human Health
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Application, Human Health
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Control
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ribosomal or RNA-related 

T-lymphocytes or epithelial cells 

Graph Properties

Application, Human Health
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Clique profiles using the five most highly represented genes:

PatientControl

56%CDH321%GTPBP4

64%FGFR324%SLC25A13

64%PPL26%DKFZP564O123

65%NFIB27%RANBP6

66%FGFR229%UBE1C

Clique membershipGene SymbolClique membershipGene Symbol

Application, Human Health
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Clique profiles using the five most highly represented genes:

PatientControl

56%CDH321%GTPBP4

64%FGFR324%SLC25A13

64%PPL26%DKFZP564O123

65%NFIB27%RANBP6

66%FGFR229%UBE1C

Clique membershipGene SymbolClique membershipGene Symbol

Of course gene representation is only a small part of the story.

Application, Human Health



41ELECTRICAL ENGINEERING & COMPUTER SCIENCE
UNIVERSITY OF TENNESSEE

NZIMA
Napier
2008

We can use traditional algorithmic tools
• extract cores, cliques and other dense subgraphs
• check for scale-freeness, putative TFs, hubs, etc

Application, Human Health
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• extract cores, cliques and other dense subgraphs
• check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools
• sort subgraphs by ontological enrichment, CREs, etc
• compare to literature, databases, etc
• match genes and gene products with known interactions

Application, Human Health
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We can use commercial and other tools
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It’s tempting to scan for your favorites...

Application, Human Health
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We can use traditional algorithmic tools
• extract cores, cliques and other dense subgraphs
• check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools
• sort subgraphs by ontological enrichment, CREs, etc
• compare to literature, databases, etc
• match genes and gene products with known interactions

It’s tempting to scan for your favorites...

But our goal is to identify altered interactions

Application, Human Health
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Differential Analysis
Gene (vertex) comparisons:

• differential expression
• does not require multiple conditions 
• compare the two lists of gene expression levels

Correlate (edge) comparisons 
• differential correlation
• requires multiple conditions in control, in dose
• compare the two lists of gene-gene correlations

Putative network (clique) comparisons
• differential topology
• focus on network aka clique differences
• consider the clique intersection graph

Application, Human Health
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Correlate (edge) comparisons 
• differential correlation
• requires multiple conditions in control, in dose
• compare the two lists of gene-gene correlations

Putative network (clique) comparisons
• differential topology
• focus on network aka clique differences
• consider the clique intersection graph

Ongoing Work
• 62 genes pass all three screens, 6 match a known pathway
• ITK (IL2-inducible T-cell kinase), studying in depth...moving to Illumina

Application, Human Health
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Differential Analysis
Gene (vertex) comparisons:

• differential expression
• does not require multiple conditions 
• compare the two lists of gene expression levels

Correlate (edge) comparisons 
• differential correlation
• requires multiple conditions in control, in dose
• compare the two lists of gene-gene correlations

Putative network (clique) comparisons
• differential topology
• focus on network aka clique differences
• consider the clique intersection graph

Ongoing Work
• 62 genes pass all three screens, 6 match a known pathway
• ITK (IL2-inducible T-cell kinase), studying in depth...moving to Illumina

For Impact
• concentrate on real data, and working with bench biologists
• strategic publications (e.g., Nature Genetics, PLoS Comp Bio, etc)

Application, Human Health
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Protein Complex Prediction

Peptidase activity complex 

yeast 
proteins

Protein binding complex

edge deleted

edge added

protein 
complexes

Protein-Protein
Interaction Network
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Protein Complex Prediction

Peptidase activity complex 

yeast 
proteins

Protein binding complex

edge deleted

edge added

protein 
complexes

Protein-Protein
Interaction Network

Recognize as
Cluster Editing
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Protein Complex Prediction

Computational Experience
• algorithms studied by Guo, Niedermeier, Damaschke, others

• synthetic graphs

• known edit distances

• various sizes, densities and distances
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Protein Complex Prediction

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

36 (No) 37 (No) 38 (No) 39 (No) 40 (40) 41 (40) 42 (40) 43 (40)

Refined Branching without Interleaving

Refined Branching with Interleaving

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

16 (No) 17 (No) 18 (No) 19 (No) 20 (20) 21 (21/20) 22 (21/20)

R
un

tim
es

 (s
ec

on
ds

)

Basic Branching without Interleaving
Basic Branching with Interleaving
Refined Branching without Interleaving
Refined Branching with Interleaving

Edit distance tried (found)

. . .

Computational Experience
• non-monotonic behavior

• importance of interleaving

• benefits of refinement 
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Protein Complex Prediction

Nice application, but best methods still too slow

No instances Yes instances

27+ hours 20 vertices      
60 edit distance
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Application, Model Organisms

Gregor Mendel, 1822-1884
pea experiments

• green vs yellow

• round vs wrinkly

• inheritance, dominant and recessive traits (alleles) 

• monogenetic phenotypes

• very “lucky”
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Application, Model Organisms

Gregor Meldel, pea experiments

• green vs yellow

• round vs wrinkly

• inheritance, dominance, monogenetic phenotypes

• but most traits appear to be “complex” (polygenetic)

• many allelic combinations convey evolutionary (dis)advantage

• simple rules of Mendelian inheritance do not apply 

• need a measure of independence: Linkage Disequilibrium (LD)
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Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
• non-random association of alleles at two or more loci
• the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies

• not necessarily on the same chromosome
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Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
• non-random association of alleles at two or more loci
• the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies

• not necessarily on the same chromosome

Reflects biologically meaningful association of loci
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Application, Model Organisms

LD: a measure of statistical dependence between genetic markers
• non-random association of alleles at two or more loci
• the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies

• not necessarily on the same chromosome

Reflects biologically meaningful association of loci

Generally a result of population history
• population genealogy
• recombination frequency
• co-adaptive allele selection
• natural selection
• other factors

LD: a measure of statistical dependence between genetic markers
• non-random association of alleles at two or more loci
• the occurrence in a population of two linked alleles at a frequency
higher or lower than expected on the basis of the individual frequencies

• not necessarily on the same chromosome

Reflects biologically meaningful association of loci
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Application, Model Organisms

Evaluation of Mus musculus breeding strategies

Solution: Use SNPs, correlation, paraclique and proximity

Standard Inbred (SI)
Recombinant Inbred (RI)

BXD, LXS, etc
The Collaborative Cross
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Application, Model Organisms
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Application, Model Organisms
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