

Analysis of High-Throughput Biological Data Part II: Computational Bottlenecks and Novel Applications

Mike Langston

Professor Department of Electrical Engineering and Computer Science University of Tennessee and Collaborating Scientist Biological Sciences Division Oak Ridge National Laboratory USA

21 February 2008

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

Outline of Talk

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

- How do biological entities function in unison and at all levels of scale?
- Linkage, communication and networks (graphs!)

Foundations

Systems Biology

Correlation

Here are five mouse genes with Pearson correlations of at least 0.65. What of

- noise?
- experimental design?

ELECTRICAL ENGINEERING & COMPUTER SCIENCE

- circadian rhythms?
- other confounds?
- other metrics?

UNIVERSITY OF TENNESSEE

Mouse/Treatment

Foundations

Systems Biology

Correlation

Coefficient Profiles

Sometimes via

- Pearson
- Spearman
- Mutual Information
- Etc

Other times we need

- p-values
- Bonferroni corrections
- q-values
- false discovery rates...

Correlation

Omics: key to deciphering complex systems

Correlation

Omics: key to deciphering complex systems Humans: 10¹⁴+ cells, 200+ cell types

Correlation

Omics: key to deciphering complex systems Humans: 10¹³+ cells, 200+ cell types Genome (blueprint, 20K+ genes, 10M+ polymorphisms)

Correlation

Omics: key to deciphering complex systems Humans: 10¹³+ cells, 200+ cell types Genome (blueprint, 20K+ genes, 10M+ polymorphisms) Proteome (functional units, unknown # of proteins)

Correlation

Omics: key to deciphering complex systems Humans: 10¹³+ cells, 200+ cell types Genome (blueprint, 20K+ genes, 10M+ polymorphisms) Proteome (functional units, unknown # of proteins) Transcriptome Translation (tRNA) via transcription (mRNA)

Function and Signaling (siRNA, miRNA, etc)

Correlation

Omics: key to deciphering complex systems Humans: 10¹³+ cells, 200+ cell types

Genome (blueprint, 20K+ genes, 10M+ polymorphisms) Proteome (functional units, unknown # of proteins) Transcriptome

Translation (tRNA) via transcription (mRNA) Function and Signaling (siRNA, miRNA, etc) Other: metabalome, lipidome, interactome, omeome!

Correlation

Omics

Visualization

- highly dependent on scale

Correlation

Omics

Visualization

- highly dependent on scale
- the only omics often seen is a "rediculome"

Correlation

Omics

Visualization

Computational Tools - focus usually on dense subgraphs

Correlation

Omics

Visualization

Computational Tools

- **Maximum Clique**
 - must run often
 - time is a limiting factor
 - exploit fixed-parameter tractability (FPT)

Correlation

Omics

Visualization

Computational Tools Maximum Clique Maximal Clique

- huge outputs
- various orderings
- memory is often the limiting factor

Correlation

Omics

Visualization

- Computational Tools Maximum Clique Maximal Clique Biclique
 - new algorithms
 - bipartite graphs

Correlation

Omics

Visualization

- Computational Tools Maximum Clique Maximal Clique Biclique Paraclique
 - noisy data

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

Gene (vertex) comparisons:

- differential expression
- does not require multiple conditions
- compare the two lists of gene expression levels

Correlate (edge) comparisons

- differential correlation
- requires multiple conditions in control versus stimulus
- compare two lists of gene-gene correlations

Putative network (clique) comparisons

- differential topology
- compare cliques, sort by ontology, CREs, etc
- consider granularity, for example, with the clique intersection graph

There's a high probability that somewhere in here is a polymorphism controlling this trait.

ELECTRICAL ENGINEERING & COMPUTER SCIENCE UNIVERSITY OF TENNESSEE

н

Concentrated Parental Alleles

26

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

Data Integration

Phenotypic Data (e.g., diseased versus healthy patients)

Phenotypic Data (e.g., diseased versus healthy patients) Proteomic Data (e.g., amino acid peaks from mass spec)

Phenotypic Data (e. g., diseased versus healthy patients) Proteomic Data (e. g., amino acid peaks from mass spec) Transcriptomic Data (e.g., gene expression from µarrays)

Phenotypic Data (e. g., diseased versus healthy patients) Proteomic Data (e. g., amino acid peaks from mass spec) Transcriptomic Data (e.g., gene expression from µarrays) Genotypic Data: SNPs

• DNA sequence variations, each occurring when a single nucleotide in the genome differs between members of a species

- highly conserved throughout evolution and within population
- almost always just two alleles
- detected with SNP arrays designed to detect polymorphisms

5r

Data Integration

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

NZIMA Napier 2008

Application, Human Health

Data Description

- Göteborg, Sweden: 56 patients and 39 controls
- Affymetrix HU133 arrays
- roughly 33,000 genes
- hay fever, eczema
- nasal secretions, lymphocytes, skin

Data Description

- Göteborg, Sweden: 56 patients and 39 controls
- Affymetrix HU133 arrays
- roughly 33,000 genes
- hay fever, eczema
- nasal secretions, lymphocytes, skin

Preprocessing

- MAS5.0
- log transformed
- centered around zero with z scores
- probesets with consistently low expression levels removed
- replicates averaged

Data Description

- Göteborg, Sweden, 56 patients and 39 controls
- Affymetrix HU133 arrays
- roughly 33,000 genes
- hay fever, eczema
- nasal secretions, lymphocytes, skin

Preprocessing

- MAS5.0
- log transformed
- centered around zero with z scores
- probesets with consistently low expression levels removed
- replicates averaged

Threshold Selection

- chosen to balance graph densities
- AFFX spots retained for quality control

Correlation Coefficient Distribution

Correlation Value

Graph Properties

Control					
Threshold	Vertices	Edges	Maximal Cliques	Maximum Size	
0.88	8009	256346	240146378	84	
0.89	7169	178144	15067064	79	
0.90	6254	118900	1579041	71	
0.91	5317	75541	243232	66	
0.92	4415	45471	51315	59	

ribosomal or RNA-related

Patient

Threshold	Vertices	Edges	Maximal Cliques	Maximum Size
0.88	5809	91152	2298595	61
0.89	4999	62271	447176	52
0.90	4146	40933	114030	45
0.91	3405	26031	41605	35
0.92	2628	11322	11322	28

T-lymphocytes or epithelial cells

Clique profiles using the five most highly represented genes:

Control		Patient	
Gene Symbol	Clique membership	Gene Symbol	Clique membership
UBE1C	29%	FGFR2	66%
RANBP6	27%	NFIB	65%
DKFZP5640123	26%	PPL	64%
SLC25A13	24%	FGFR3	64%
GTPBP4	21%	CDH3	56%

Clique profiles using the five most highly represented genes:

Control		Patient	
Gene Symbol	Clique membership	Gene Symbol	Clique membership
UBE1C	29%	FGFR2	66%
RANBP6	27%	NFIB	65%
DKFZP5640123	26%	PPL	64%
SLC25A13	24%	FGFR3	64%
GTPBP4	21%	CDH3	56%

Of course gene representation is only a small part of the story.

- extract cores, cliques and other dense subgraphs
- check for scale-freeness, putative TFs, hubs, etc

- extract cores, cliques and other dense subgraphs
- check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

- sort subgraphs by ontological enrichment, CREs, etc
- compare to literature, databases, etc
- match genes and gene products with known interactions

- extract cores, cliques and other dense subgraphs
- check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

- sort subgraphs by ontological enrichment, CREs, etc
- compare to literature, databases, etc
- match genes and gene products with known interactions

It's tempting to scan for your favorites...

- extract cores, cliques and other dense subgraphs
- check for scale-freeness, putative TFs, hubs, etc

We can use commercial and other tools

- sort subgraphs by ontological enrichment, CREs, etc
- compare to literature, databases, etc
- match genes and gene products with known interactions

It's tempting to scan for your favorites...

But our goal is to identify altered interactions

NZIMA Napier 2008

Application, Human Health

Differential Analysis

Gene (vertex) comparisons:

- differential expression
- does not require multiple conditions
- compare the two lists of gene expression levels

Correlate (edge) comparisons

- differential correlation
- requires multiple conditions in control, in dose
- compare the two lists of gene-gene correlations

Putative network (clique) comparisons

- differential topology
- focus on network aka clique differences
- consider the clique intersection graph

Differential Analysis

Gene (vertex) comparisons:

differential expression

2008

- does not require multiple conditions
- compare the two lists of gene expression levels

Correlate (edge) comparisons

- differential correlation
- requires multiple conditions in control, in dose
- compare the two lists of gene-gene correlations

Putative network (clique) comparisons

- differential topology
- focus on network aka clique differences
- consider the clique intersection graph

Ongoing Work

- 62 genes pass all three screens, 6 match a known pathway
- ITK (IL2-inducible T-cell kinase), studying in depth...moving to Illumina

Differential Analysis

Gene (vertex) comparisons:

- differential expression
- does not require multiple conditions
- compare the two lists of gene expression levels

Correlate (edge) comparisons

- differential correlation
- requires multiple conditions in control, in dose
- compare the two lists of gene-gene correlations

Putative network (clique) comparisons

- differential topology
- focus on network aka clique differences
- consider the clique intersection graph

Ongoing Work

- 62 genes pass all three screens, 6 match a known pathway
- ITK (IL2-inducible T-cell kinase), studying in depth...moving to Illumina

For Impact

- concentrate on real data, and working with bench biologists
- strategic publications (e.g., Nature Genetics, PLoS Comp Bio, etc)

ELECTRICAL ENGINEERING & COMPUTER SCIENCE UNIVERSITY OF TENNESSEE

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

Computational Experience

- algorithms studied by Guo, Niedermeier, Damaschke, others
- synthetic graphs
 - known edit distances
 - various sizes, densities and distances

Protein Complex Prediction

Computational Experience

- non-monotonic behavior
- importance of interleaving
- benefits of refinement

Edit distance tried (found)

Nice application, but best methods still too slow

Foundations

Gene Coexpression Analysis

Data Integration

Application to Human Health

Protein Complex Prediction

Application to Model Organisms

Application, Model Organisms

Gregor Mendel, 1822-1884

pea experiments

- green vs yellow
- round vs wrinkly

- inheritance, dominant and recessive traits (alleles)
- monogenetic phenotypes
- very "lucky"

Application, Model Organisms

Gregor Meldel, pea experiments

- green vs yellow
- round vs wrinkly

- inheritance, dominance, monogenetic phenotypes
- but most traits appear to be "complex" (polygenetic)
- many allelic combinations convey evolutionary (dis)advantage
- simple rules of Mendelian inheritance do not apply
- need a measure of independence: Linkage Disequilibrium (LD)

LD: a measure of statistical dependence between genetic markers

- non-random association of alleles at two or more loci
- the occurrence in a population of two linked alleles at a frequency higher or lower than expected on the basis of the individual frequencies
- not necessarily on the same chromosome

LD: a measure of statistical dependence between genetic markers

- non-random association of alleles at two or more loci
- the occurrence in a population of two linked alleles at a frequency higher or lower than expected on the basis of the individual frequencies
- not necessarily on the same chromosome

Reflects biologically meaningful association of loci

LD: a measure of statistical dependence between genetic markers

- non-random association of alleles at two or more loci
- the occurrence in a population of two linked alleles at a frequency higher or lower than expected on the basis of the individual frequencies
- not necessarily on the same chromosome

Reflects biologically meaningful association of loci

Generally a result of population history

- population genealogy
- recombination frequency
- co-adaptive allele selection
- natural selection
- other factors

Evaluation of *Mus musculus* breeding strategies

Standard Inbred (SI)

Solution: Use SNPs, correlation, paraclique and proximity

ELECTRICAL ENGINEERING & COMPUTER SCIENCE UNIVERSITY OF TENNESSEE

Application, Model Organisms

Number of LD Networks

Number of Non-Syntenic LD Networks

Chromosome Coverage

NZIMA Napier 2008

Collaborators

Research Scientists (Incomplete!):

Mikael Benson Elissa Chesler Frank Dehne **Mike Fellows** Ivan Gerling Dan Goldowitz Malak Kotb Mark Ragan Arnold Saxton Brynn Voy Rob Williams **Bing Zhang**

Current Students: Bhavesh Borate Patricia Carey John Eblen **Jeremy Jay** Zuopan Li Sudhir Naswa Andy Perkins **Vivek Philip Charles Phillips Gary Rogers** Jon Scharff Yun Zhang

