
A Brief History of Lognormal 
and Power Law Distributions

and an Application 
to File Size Distributions

Michael Mitzenmacher
Harvard University



Motivation: General

• Power laws now everywhere in computer science.
– See the popular texts Linked by Barabasi or Six Degrees

by Watts.
– File sizes, download times, Internet topology, Web 

graph, etc.

• Other sciences have known about power laws for a 
long time.
– Economics, physics, ecology, linguistics, etc.

• We should know history before diving in. 



Motivation: Specific
• Recent work on file size distributions

– Downey (2001):  file sizes have lognormal 
distribution (model and empirical results).

– Barford et al. (1999):  file sizes have lognormal 
body and Pareto (power law) tail.  (empirical)

• Understanding file sizes important for
– Simulation tools:  SURGE
– Explaining network phenomena:  power law for file 

sizes may explain self-similarity of network traffic.
• Wanted to settle discrepancy.
• Found rich (and insufficiently cited) history.
• Helped lead to new file size model.



Power Law Distribution
• A power law distribution satisfies

• Pareto distribution

– Log-complementary cumulative distribution 
function (ccdf) is exactly linear.

• Properties
– Infinite mean/variance possible
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Lognormal Distribution

• X is lognormally distributed if Y = ln X is 
normally distributed.

• Density function:  
• Properties:

– Finite mean/variance.
– Skewed:  mean > median > mode
– Multiplicative:  X1 lognormal, X2 lognormal 

implies X1X2 lognormal.
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Similarity
• Easily seen by looking at log-densities.
• Pareto has linear log-density.

• For large σ, lognormal has nearly linear  
log-density.

• Similarly, both have near linear log-ccdfs.
– Log-ccdfs usually used for empirical, visual 

tests of power law behavior.
• Question:  how to differentiate them empirically?
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Lognormal vs. Power Law

• Question:  Is this distribution lognormal or a 
power law?
– Reasonable follow-up:  Does it matter?

• Primarily in economics
– Income distribution.
– Stock prices.  (Black-Scholes model.)

• But also papers in ecology, biology, 
astronomy, etc.



History
• Power laws

– Pareto : income distribution, 1897
– Zipf-Auerbach:  city sizes, 1913/1940’s
– Zipf-Estouf:  word frequency, 1916/1940’s
– Lotka:  bibliometrics, 1926
– Mandelbrot: economics/information theory, 1950’s+

• Lognormal
– McAlister, Kapetyn:  1879, 1903.
– Gibrat: multiplicative processes, 1930’s.



Generative Models: Power Law
• Preferential attachment

– Dates back to Yule (1924), Simon (1955).
• Yule:  species and genera.
• Simon:  income distribution, city population 

distributions, word frequency distributions.

– Web page degrees:  more likely to link to page 
with many links.

• Optimization based
– Mandelbrot (1953):  optimize information per 

character.  
– HOT model for file sizes.  Zhu et al. (2001)



Preferential Attachment
• Consider dynamic Web graph.

– Pages join one at a time.
– Each page has one outlink.

• Let Xj(t) be the number of pages of degree j
at time t.

• New page links:
– With probability α, link to a random page.
– With probability (1- α), a link to a page chosen 

proportionally to indegree.  (Copy a link.)  



Simple Analysis

• Assume limiting distribution where
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Optimization Model: Power Law

• Mandelbrot experiment:  design a language 
over a d-ary alphabet to optimize information 
per character.
– Probability of jth most frequently used word is pj.
– Length of jth most frequently used word is cj.

• Average information per word:

• Average characters per word:
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Optimization Model: Power Law

• Optimize ratio A = C/H.
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Monkeys Typing Randomly

• Miller (psychologist, 1957) suggests following:  
monkeys type randomly at a keyboard.  
– Hit each of n characters with probability p.
– Hit space bar with probability 1 - np > 0.
– A word is sequence of characters separated by a space.

• Resulting distribution of word frequencies follows 
a power law.

• Conclusion:  Mandelbrot’s “optimization” not 
required for languages to have power law



Miller’s Argument

• All words with k letters appear with prob.

• There are nk words of length k.
– Words of length k have frequency ranks 

• Manipulation yields power law behavior

• Recently extended by Conrad, Mitzenmacher to 
case of unequal letter probabilities.
– Non-trivial: requires complex analysis.
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Generative Models: Lognormal
• Start with an organism of size X0.  
• At each time step, size changes by a random 

multiplicative factor.

• If Ft is taken from a lognormal distribution, 
each Xt is lognormal.

• If Ft are independent, identically distributed 
then (by CLT) Xt converges to lognormal 
distribution.
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BUT!

• If there exists a lower bound:

then Xt converges to a power law 
distribution.  (Champernowne, 1953)

• Lognormal model easily pushed to a power 
law model.
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Example
• At each time interval, suppose size either 

increases by a factor of 2 with probability 
1/3, or decreases by a factor of 1/2 with 
probability 2/3.
– Limiting distribution is lognormal.
– But if size has a lower bound, power law.  

0 1 2 3 4 5 6-6 -5 -4 -3 -2 -1

0 1 2 3 4 5 6-4 -3 -2 -1



Example continued
0 1 2 3 4 5 6-6 -5 -4 -3 -2 -1

• After n steps distribution increases -
decreases becomes normal (CLT). 

• Limiting distribution:

0 1 2 3 4 5 6-4 -3 -2 -1
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Double Pareto Distributions

• Consider continuous version of lognormal 
generative model.
– At time t, log Xt is normal with mean µt and 

variance σ2t
• Suppose observation time is randomly 

distributed.
– Income model:  observation time depends on 

age, generations in the country, etc.



Double Pareto Distributions

• Reed (2000,2001) analyzes case where time 
distributed exponentially.

– Also Adamic, Huberman (1999).
• Simplest case:  µ = 0, σ = 1
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Double Pareto Behavior

• Double Pareto behavior, density
– On log-log plot, density is two straight lines
– Between lognormal (curved) and power law (one 

line)
• Can have lognormal shaped body, Pareto tail.

– The ccdf has Pareto tail; linear on log-log plots.
– But cdf is also linear on log-log plots.



Lognormal vs. Double Pareto



Double Pareto File Sizes

• Reed used Double Pareto to explain income 
distribution
– Appears to have lognormal body, Pareto tail.

• Double Pareto shape closely matches 
empirical file size distribution.
– Appears to have lognormal body, Pareto tail.

• Is there a reasonable model for file sizes 
that yields a Double Pareto Distribution?



Downey’s Ideas

• Most files derived from others by copying, 
editing, or filtering.

• Start with a single file.
• Each new file derived from old file.

• Like lognormal generative process.
– Individual file sizes converge to lognormal.

size file Oldsize file New ×= F



Problems

• “Global” distribution not lognormal.
– Mixture of lognormal distributions.

• Everything derived from single file.
– Not realistic.
– Large correlation:  one big file near root affects 

everybody.
• Deletions not handled.



Recursive Forest File Size Model
• Keep Downey’s basic process. 
• At each time step, either

– Completely new file generated (prob. p), with 
distribution F1 or

– New file is derived from old file (prob. 1 - p):

• Simplifying assumptions.
– Distribution F1 = F2 = F is lognormal.
– Old file chosen uniformly at random.

size file Oldsize file New 2 ×= F



Recursive Forest

Depth 0 = new files

Depth 1

Depth 2



Depth Distribution
• Node depths have geometric distribution.

– # Depth 0 nodes converge to pt;  depth 1 nodes 
converge to p(1-p)t, etc.

– So number of multiplicative steps is geometric.
– Discrete analogue of exponential distribution of 

Reed’s model.
• Yields Double Pareto file size distribution.

– File chosen uniformly at random has almost 
exponential number of time steps. 

– Lognormal body, heavy tail.
– But no nice closed form.



Simulations: CDF



Simulation: CCDF



Boston Univ. 1995 Data Set



Boston Univ 1998 Data Set



Extension: Deletions

• Suppose files deleted uniformly at random 
with probability q.
– New file generated with probability p.
– New file derived with probability 1 - p - q. 

• File depths still geometrically distributed.
• So still a Double Pareto file size 

distribution.



Extensions:  Preferential 
Attachment

• Suppose new file derived from old file with 
preferential attachment.
– Old file chosen with weight proportional to     

ax + b, where x = #current children. 
• File depths still geometrically distributed.
• So still get a double Pareto distribution.



Extensions: Correlation

• Each tree in the forest is small.
– Any multiplicative edge affects few files.

• Martingale argument shows that small 
correlations do not affect distribution.

• Large systems converge to Double Pareto 
distribution.  



Extensions: Distributions

• Choice of distribution F1, F2 matter.
• But not dramatically.

– Central limit theorem still applies.
– General closed forms very difficult.



Previous Models
• Downey

– Introduced simple derivation model.
• HOT [Zhu, Yu, Doyle, 2001]

– Information theoretic model.
– File sizes chosen by Web system designers to maximize 

information/unit cost to user.
– Similar to early heavy tail work by Mandelbrot.
– More rigorous framework also studied by  Fabrikant, 

Koutsoupias, Papadimitriou.
• Log-t distributions [Mitzenmacher,Tworetzky, 

2003] 



Summary of File Model

• Recursive Forest File Model
– is simple, general.
– combines multiplicative models and simple, 

well-studied random graph processes.
– is robust to changes (deletions, preferential 

attachement, etc.)
– explains lognormal body / heavy tail 

phenomenon.



Future Directions

• Tools for characterizing double-Pareto and 
double-Pareto lognormal parameters.
– Fine tune matches to empirical results.

• Find evidence supporting/contradicting the 
model.
– File system histories, etc. 

• Applications in other fields.
– Explains Double Pareto distributions in 

generational settings.



Conclusions
• Power law distributions are natural.

– They are everywhere.
• Many simple models yield power laws.

– New paper algorithm (to be avoided).
• Find empirical power law with no model.
• Apply some standard model to explain power law.

• Lognormal vs. power law argument natural.
– Some generative models are extremely similar.
– Power law appears more robust.
– Double Pareto distributions may explain 

lognormal body / Pareto tail phenomenon. 



New Directions for 
Power Law Research

Michael Mitzenmacher
Harvard University



My (Biased) View

• There are 5 stages of power law research.
1) Observe: Gather data to demonstrate power law 

behavior in a system. 
2) Interpret: Explain the importance of this observation 

in the system context.
3) Model: Propose an underlying model for the observed 

behavior of the system.
4) Validate: Find data to validate (and if necessary 

specialize or modify) the model.
5) Control: Design ways to control and modify the 

underlying behavior of the system based on the model.



My (Biased) View

• In networks, we have spent a lot of time observing
and interpreting power laws.

• We are currently in the modeling stage. 
– Many, many possible models.
– I’ll talk about some of my favorites later on.

• We need to now put much more focus on 
validation and control.
– And these are specific areas where computer science 

has much to contribute!



Validation:  The Current Stage

• We now have so many models.
• It may be important to know the right model, to 

extrapolate and control future behavior.
• Given a proposed underlying model, we need tools 

to help us validate it.
• We appear to be entering the validation stage of 

research…. BUT the first steps have focused on 
invalidation rather than validation.



Examples : Invalidation

• Lakhina, Byers, Crovella, Xie
– Show that observed power-law of Internet topology 

might be because of biases in traceroute sampling.
• Chen, Chang, Govindan, Jamin, Shenker, 

Willinger 
– Show that Internet topology has characteristics that do 

not match preferential-attachment graphs.
– Suggest an alternative mechanism. 

• But does this alternative match all characteristics, or are we 
still missing some?



My (Biased) View

• Invalidation is an important part of the process!  
BUT it is inherently different than validating a 
model.

• Validating seems much harder.
• Indeed, it is arguable what constitutes a validation. 
• Question:  what should it mean to say              

“This model is consistent with observed data.”  



To Control

• In many systems, intervention can impact the 
outcome.
– Maybe not for earthquakes, but for computer networks!
– Typical setting:  individual agents acting in their own 

best interest, giving a global power law.  Agents can be 
given incentives to change behavior.

• General problem:  given a good model, determine 
how to change system behavior to optimize a 
global performance function.
– Distributed algorithmic mechanism design.
– Mix of economics/game theory and computer science.



Possible Control Approaches

• Adding constraints: local or global
– Example:  total space in a file system.
– Example:  preferential attachment but links limited by 

an underlying metric.
• Add incentives or costs

– Example:  charges for exceeding soft disk quotas.
– Example:  payments for certain AS level connections.

• Limiting information
– Impact decisions by not letting everyone have true view 

of the system.



Conclusion : My (Biased) View
• There are 5 stages of power law research.

1) Observe: Gather data to demonstrate power law 
behavior in a system. 

2) Interpret: Explain the import of this observation in the 
system context.

3) Model: Propose an underlying model for the observed 
behavior of the system.

4) Validate: Find data to validate (and if necessary 
specialize or modify) the model.

5) Control: Design ways to control and modify the 
underlying behavior of the system based on the model.

• We need to focus on validation and control.
– Lots of open research problems.



A Chance for Collaboration
• The observe/interpret stages of research are dominated by 

systems;  modeling dominated by theory.
– And need new insights, from statistics, control theory, economics!!!

• Validation and control require a strong theoretical 
foundation.
– Need universal ideas and methods that span different types of 

systems.
– Need understanding of underlying mathematical models.

• But also a large systems buy-in.
– Getting/analyzing/understanding data.
– Find avenues for real impact.

• Good area for future systems/theory/others collaboration 
and interaction.
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