A Brief History of Lognormal and Power Law Distributions and an Application to File Size Distributions

> Michael Mitzenmacher Harvard University

Motivation: General

- Power laws now everywhere in computer science.
 - See the popular texts *Linked* by Barabasi or *Six Degrees* by Watts.
 - File sizes, download times, Internet topology, Web graph, etc.
- Other sciences have known about power laws for a long time.
 - Economics, physics, ecology, linguistics, etc.
- We should know history before diving in.

Motivation: Specific

- Recent work on file size distributions
 - Downey (2001): file sizes have lognormal distribution (model and empirical results).
 - Barford et al. (1999): file sizes have lognormal body and Pareto (power law) tail. (empirical)
- Understanding file sizes important for
 - Simulation tools: SURGE
 - Explaining network phenomena: power law for file sizes may explain self-similarity of network traffic.
- Wanted to settle discrepancy.
- Found rich (and insufficiently cited) history.
- Helped lead to new file size model.

Power Law Distribution

• A power law distribution satisfies

 $\Pr[X \ge x] \sim cx^{-\alpha}$

• Pareto distribution

$$\Pr[X \ge x] = \binom{x/k}{k}^{-\alpha}$$

 Log-complementary cumulative distribution function (ccdf) is exactly linear.

 $\ln \Pr[X \ge x] = -\alpha \ln x + \alpha \ln k$

- Properties
 - Infinite mean/variance possible

Lognormal Distribution

- *X* is lognormally distributed if $Y = \ln X$ is normally distributed.
- Density function: $f(x) = \frac{1}{\sqrt{2\pi\sigma x}} e^{-(\ln x \mu)^2/2\sigma^2}$
- Properties:
 - Finite mean/variance.
 - Skewed: mean > median > mode
 - Multiplicative: X_1 lognormal, X_2 lognormal implies X_1X_2 lognormal.

Similarity

- Easily seen by looking at log-densities.
- Pareto has linear log-density.

 $\ln f(x) = -(\alpha - 1)\ln x + \alpha \ln k + \ln \alpha$

• For large σ , lognormal has nearly linear log-density.

 $\ln f(x) = -\ln x - \ln \sqrt{2\pi}\sigma - \frac{(\ln x - \mu)^2}{2\sigma^2}$

- Similarly, both have near linear log-ccdfs.
 - Log-ccdfs usually used for empirical, visual tests of power law behavior.
- Question: how to differentiate them empirically?

Lognormal vs. Power Law

- Question: Is this distribution lognormal or a power law?
 - Reasonable follow-up: Does it matter?
- Primarily in economics
 - Income distribution.
 - Stock prices. (Black-Scholes model.)
- But also papers in ecology, biology, astronomy, etc.

History

- Power laws
 - Pareto : income distribution, 1897
 - Zipf-Auerbach: city sizes, 1913/1940's
 - Zipf-Estouf: word frequency, 1916/1940's
 - Lotka: bibliometrics, 1926
 - Mandelbrot: economics/information theory, 1950's+
- Lognormal
 - McAlister, Kapetyn: 1879, 1903.
 - Gibrat: multiplicative processes, 1930's.

Generative Models: Power Law

- Preferential attachment
 - Dates back to Yule (1924), Simon (1955).
 - Yule: species and genera.
 - Simon: income distribution, city population distributions, word frequency distributions.
 - Web page degrees: more likely to link to page with many links.
- Optimization based
 - Mandelbrot (1953): optimize information per character.
 - HOT model for file sizes. Zhu et al. (2001)

Preferential Attachment

- Consider dynamic Web graph.
 - Pages join one at a time.
 - Each page has one outlink.
- Let $X_j(t)$ be the number of pages of degree j at time t.
- New page links:
 - With probability α , link to a random page.
 - With probability (1α) , a link to a page chosen proportionally to indegree. (Copy a link.)

Simple Analysis

• Assume limiting distribution where $X_{i} = c_{i}t$

$$\frac{c_j}{c_{j-1}} \sim 1 - \frac{2 - \alpha}{1 - \alpha} \frac{1}{j}$$

 $c_j \sim j^{-(2-\alpha)/(1-\alpha)}$

Optimization Model: Power Law

- Mandelbrot experiment: design a language over a *d*-ary alphabet to optimize information per character.
 - Probability of *j*th most frequently used word is p_i .
 - Length of *j*th most frequently used word is c_j .
- Average information per word:

 $H = -\sum_{j} p_{j} \log_{2} p_{j}$

• Average characters per word:

$$C = \sum_{j} p_{j} c_{j}$$

Optimization Model: Power Law

• Optimize ratio A = C/H.

 $H = -\sum_{j} p_{j} \log_{2} p_{j} \qquad C = \sum_{j} p_{j} c_{j}$ $\frac{dA}{dp_{j}} = \frac{\left(c_{j}H + C \log_{2}\left(ep_{j}\right)\right)}{H^{2}}$ $\frac{dA}{dp_{j}} = 0 \text{ when } p_{j} = 2^{-Hc_{j}/C} / e$

If $c_j \approx \log_d j$, power law results.

Monkeys Typing Randomly

- Miller (psychologist, 1957) suggests following: monkeys type randomly at a keyboard.
 - Hit each of *n* characters with probability *p*.
 - Hit space bar with probability 1 np > 0.
 - A word is sequence of characters separated by a space.
- Resulting distribution of word frequencies follows a power law.
- Conclusion: Mandelbrot's "optimization" not required for languages to have power law

Miller's Argument

- All words with *k* letters appear with prob. $p^{k}(1-pn)$
- There are n^k words of length k.

- Words of length *k* have frequency ranks $\left[1 + (n^k - 1)/(n - 1), (n^{k+1} - 1)/(n - 1)\right]$

- Manipulation yields power law behavior $p^{\log_N j+1}(1-np) \le p_j \le p^{\log_N j}(1-np)$
- Recently extended by Conrad, Mitzenmacher to case of unequal letter probabilities.
 - Non-trivial: requires complex analysis.

Generative Models: Lognormal

- Start with an organism of size X_0 .
- At each time step, size changes by a random multiplicative factor.

$$X_t = F_{t-1} X_{t-1}$$

- If F_t is taken from a lognormal distribution, each X_t is lognormal.
- If *F_t* are independent, identically distributed then (by CLT) *X_t* converges to lognormal distribution.

BUT!

• If there exists a lower bound:

 $X_t = \max(\varepsilon, F_{t-1}X_{t-1})$

then X_t converges to a power law distribution. (Champernowne, 1953)

• Lognormal model easily pushed to a power law model.

Example

- At each time interval, suppose size either increases by a factor of 2 with probability 1/3, or decreases by a factor of 1/2 with probability 2/3.
 - Limiting distribution is lognormal.
 - But if size has a lower bound, power law.

Example continued

• After *n* steps distribution increases - decreases becomes normal (CLT).

• Limiting distribution:

 $\Pr[X \ge x] \sim 2^{-x} \Longrightarrow \Pr[\operatorname{size} \ge x] \sim 1/x$

Double Pareto Distributions

- Consider continuous version of lognormal generative model.
 - At time *t*, $\log X_t$ is normal with mean μt and variance $\sigma^2 t$
- Suppose observation time is randomly distributed.
 - Income model: observation time depends on age, generations in the country, etc.

Double Pareto Distributions

• Reed (2000,2001) analyzes case where time distributed exponentially.

$$f(x) = \int_{t=0}^{\infty} \lambda e^{-\lambda t} \frac{1}{\sqrt{2\pi\sigma t}} e^{-(\ln x - \mu t)^2/2\sigma^2 t} dt$$

– Also Adamic, Huberman (1999).

• Simplest case: $\mu = 0, \sigma = 1$

$$f(x) = \begin{cases} \sqrt{\frac{\lambda}{2}} x^{-1 - \sqrt{2\lambda}} & \text{for } x \ge 1 \\ \sqrt{\frac{\lambda}{2}} x^{-1 + \sqrt{2\lambda}} & \text{for } x \le 1 \end{cases}$$

Double Pareto Behavior

- Double Pareto behavior, density
 - On log-log plot, density is two straight lines
 - Between lognormal (curved) and power law (one line)
- Can have lognormal shaped body, Pareto tail.
 The ccdf has Pareto tail; linear on log-log plots.
 - But cdf is also linear on log-log plots.

Lognormal vs. Double Pareto

Double Pareto File Sizes

• Reed used Double Pareto to explain income distribution

- Appears to have lognormal body, Pareto tail.

• Double Pareto shape closely matches empirical file size distribution.

- Appears to have lognormal body, Pareto tail.

• Is there a reasonable model for file sizes that yields a Double Pareto Distribution?

Downey's Ideas

- Most files derived from others by copying, editing, or filtering.
- Start with a single file.
- Each new file derived from old file. New file size = $F \times Old$ file size
- Like lognormal generative process.

– Individual file sizes converge to lognormal.

Problems

- "Global" distribution not lognormal.
 Mixture of lognormal distributions.
- Everything derived from single file.
 - Not realistic.
 - Large correlation: one big file near root affects everybody.
- Deletions not handled.

Recursive Forest File Size Model

- Keep Downey's basic process.
- At each time step, either
 - Completely new file generated (prob. p), with distribution F_1 or
 - New file is derived from old file (prob. 1 p):

New file size = $F_2 \times Old$ file size

- Simplifying assumptions.
 - Distribution $F_1 = F_2 = F$ is lognormal.
 - Old file chosen uniformly at random.

Recursive Forest

Depth Distribution

- Node depths have geometric distribution.
 - # Depth 0 nodes converge to pt; depth 1 nodes converge to p(1-p)t, etc.
 - So number of multiplicative steps is geometric.
 - Discrete analogue of exponential distribution of Reed's model.
- Yields Double Pareto file size distribution.
 - File chosen uniformly at random has almost exponential number of time steps.
 - Lognormal body, heavy tail.
 - But no nice closed form.

Simulations: CDF

Simulation: CCDF

Boston Univ. 1995 Data Set

Boston Univ 1998 Data Set

Extension: Deletions

- Suppose files deleted uniformly at random with probability *q*.
 - New file generated with probability *p*.
 - New file derived with probability 1 p q.
- File depths still geometrically distributed.
- So still a Double Pareto file size distribution.

Extensions: Preferential Attachment

- Suppose new file derived from old file with preferential attachment.
 - Old file chosen with weight proportional to ax + b, where x =#current children.
- File depths still geometrically distributed.
- So still get a double Pareto distribution.

Extensions: Correlation

• Each tree in the forest is small.

– Any multiplicative edge affects few files.

- Martingale argument shows that small correlations do not affect distribution.
- Large systems converge to Double Pareto distribution.

Extensions: Distributions

- Choice of distribution F_1 , F_2 matter.
- But not dramatically.
 - Central limit theorem still applies.
 - General closed forms very difficult.

Previous Models

- Downey
 - Introduced simple derivation model.
- HOT [Zhu, Yu, Doyle, 2001]
 - Information theoretic model.
 - File sizes chosen by Web system designers to maximize information/unit cost to user.
 - Similar to early heavy tail work by Mandelbrot.
 - More rigorous framework also studied by Fabrikant, Koutsoupias, Papadimitriou.
- Log-*t* distributions [Mitzenmacher,Tworetzky, 2003]

Summary of File Model

- Recursive Forest File Model
 - is simple, general.
 - combines multiplicative models and simple, well-studied random graph processes.
 - is robust to changes (deletions, preferential attachement, etc.)
 - explains lognormal body / heavy tail phenomenon.

Future Directions

- Tools for characterizing double-Pareto and double-Pareto lognormal parameters.
 - Fine tune matches to empirical results.
- Find evidence supporting/contradicting the model.
 - File system histories, etc.
- Applications in other fields.
 - Explains Double Pareto distributions in generational settings.

Conclusions

- Power law distributions are natural.
 - They are everywhere.
- Many simple models yield power laws.
 - New paper algorithm (to be avoided).
 - Find empirical power law with no model.
 - Apply some standard model to explain power law.
- Lognormal vs. power law argument natural.
 - Some generative models are extremely similar.
 - Power law appears more robust.
 - Double Pareto distributions may explain lognormal body / Pareto tail phenomenon.

New Directions for Power Law Research

Michael Mitzenmacher Harvard University

My (Biased) View

- There are 5 stages of power law research.
 - 1) **Observe:** Gather data to demonstrate power law behavior in a system.
 - 2) Interpret: Explain the importance of this observation in the system context.
 - 3) Model: Propose an underlying model for the observed behavior of the system.
 - 4) Validate: Find data to validate (and if necessary specialize or modify) the model.
 - 5) **Control:** Design ways to control and modify the underlying behavior of the system based on the model.

My (Biased) View

- In networks, we have spent a lot of time *observing* and *interpreting* power laws.
- We are currently in the *modeling* stage.
 - Many, many possible models.
 - I'll talk about some of my favorites later on.
- We need to now put much more focus on *validation* and *control*.
 - And these are specific areas where computer science has much to contribute!

Validation: The Current Stage

- We now have so many models.
- It may be important to know the *right* model, to extrapolate and control future behavior.
- Given a proposed underlying model, we need tools to help us validate it.
- We appear to be entering the validation stage of research.... BUT the first steps have focused on *invalidation* rather than *validation*.

Examples : Invalidation

- Lakhina, Byers, Crovella, Xie
 - Show that observed power-law of Internet topology might be because of biases in traceroute sampling.
- Chen, Chang, Govindan, Jamin, Shenker, Willinger
 - Show that Internet topology has characteristics that do not match preferential-attachment graphs.
 - Suggest an alternative mechanism.
 - But does this alternative match all characteristics, or are we still missing some?

My (Biased) View

- Invalidation is an important part of the process! BUT it is inherently different than validating a model.
- Validating seems much harder.
- Indeed, it is arguable what constitutes a validation.
- Question: what should it mean to say "This model is consistent with observed data."

To Control

- In many systems, intervention can impact the outcome.
 - Maybe not for earthquakes, but for computer networks!
 - Typical setting: individual agents acting in their own best interest, giving a global power law. Agents can be given incentives to change behavior.
- General problem: given a good model, determine how to change system behavior to optimize a global performance function.
 - Distributed algorithmic mechanism design.
 - Mix of economics/game theory and computer science.

Possible Control Approaches

- Adding constraints: local or global
 - Example: total space in a file system.
 - Example: preferential attachment but links limited by an underlying metric.
- Add incentives or costs
 - Example: charges for exceeding soft disk quotas.
 - Example: payments for certain AS level connections.
- Limiting information
 - Impact decisions by not letting everyone have true view of the system.

Conclusion : My (Biased) View

- There are 5 stages of power law research.
 - 1) Observe: Gather data to demonstrate power law behavior in a system.
 - 2) Interpret: Explain the import of this observation in the system context.
 - 3) Model: Propose an underlying model for the observed behavior of the system.
 - 4) Validate: Find data to validate (and if necessary specialize or modify) the model.
 - 5) Control: Design ways to control and modify the underlying behavior of the system based on the model.
- We need to focus on validation and control.
 - Lots of open research problems.

A Chance for Collaboration

- The observe/interpret stages of research are dominated by systems; modeling dominated by theory.
 - And need new insights, from statistics, control theory, economics!!!
- Validation and control require a strong theoretical foundation.
 - Need universal ideas and methods that span different types of systems.
 - Need understanding of underlying mathematical models.
- But also a large systems buy-in.
 - Getting/analyzing/understanding data.
 - Find avenues for real impact.
- Good area for future systems/theory/others collaboration and interaction.