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An example with n =3

» Consider the circular string
321312
» Its length 2 substrings are
32,21,13,31,12,23.

These are the 2-permutations of a 3-set.

» In general, we want a circular string of length n! such that
every k-permutation of [n] = {1,2,...,n} occurs (uniquely)
as a substring.

» Such strings were shown to exist by Brad Jackson, Universal

cycles of k-subsets and k-permutations, Discrete
Mathematics, 149 (1996) 123-129.



Knuth's challenge

The problem for k = n — 1 is discussed by D.E. Knuth, The Art of
Computer Programming, Volume 4, Generating All Tuples and
Permutations, Fascicle 2, in Exercise 112 of Section 7.2.1.2. On
page 121 we find the following quote:

“At least one of these cycles must almost surely be easy
to describe and to compute, as we did for de Bruijn

cycles in Section 7.2.1.1. But no simple construction has
yet been found.”

We present here a simple (and elegant and efficient) construction.



The underlying graph

» The Jackson graph Ji ,: vertices are the (k — 1)-permutations
of [n] ={1,2,...,n} and directed edges are of the form

ala---ak—1 — ax---ak-1

for b e [n]\{a2, -+ ,ak-1}
» Each vertex has in-degree and out-degree n — k + 1.
» The graph is vertex-transitive.

» The graph is Eulerian. To prove it you need to show that it is
strongly-connected.

Example: J 3.

One Eulerian cycle is our initial
example 321312 (starting at
vertex 2).




n-(n—1)---3-2=n!

» By adding the missing numbers, a (n — 1)-permutation of [n]
becomes a permutation of [n].

32 — 321
21 — 213
> 13 — 132
31 — 312
12 — 123
23 — 231
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n-(n—1)---3-2=n!

» By adding the missing numbers, a (n — 1)-permutation of [n]
becomes a permutation of [n].

32 — 321
21 — 213
. 13 — 132
31 — 312
12 — 123
23 — 231
» As permutations:
/" 715263
371526

\, 715264



The Cayley Graph Connection

" 7152634 o0 =o0p_1
» 371526
N\, 7152643 o7 =0,
» Define
=, = Cay({a,,,a,, 1} :Sh)

» The problem of finding a Hamilton cycle in =, is equivalent to
finding a universal cycle of (n — 1)-permutations of an n-set.

> (Which is equivalent to finding an Eulerian cycle in Jy ,.)



Our construction, as a bitstring

Consider the binary string S,, defined by the following recursive
rules. The base case is S, = 00. Let S, = x1x0 - - - X, where X
denotes flipping the bit x. Then, for n > 2,

Spi1:=001""2 %, 001" 2 X5 --- 001772 Xy .

Examples:

S3= 000000 = .
S4= 001000100011 00100010 001
= 001100110010001100110010.
Ss = (0011 1 0011 1 0011 0 0011 0 0011 1 00111
0011 0 0011 0 0011 1 0011 1 0011 0 0011 1 )2

As a “morphism”: 0 +— 001”721 and 1 — 001720



Our construction, as sequence of generators

Now define the mapping ¢ by 0 — o, and 1 — o,_1 where
ox=(k --- 21).

Theorem
The list ¢(Sn) is a Hamilton cycle in the directed Cayley graph =,,.

Proof: Our proof is by induction on n. We construct a list [1(n) of
the permutations along such a Hamilton cycle. Construction:

M(n)jn := nM(n—1);



Our construction, as sequence of generators

Now define the mapping ¢ by 0 — o, and 1 — o,_1 where
ox=(k --- 21).

Theorem
The list ¢(Sn) is a Hamilton cycle in the directed Cayley graph =,,.

Proof: Our proof is by induction on n. We construct a list [1(n) of
the permutations along such a Hamilton cycle. Construction:

M(n)jn := nM(n —1); = nm.

on(nm), o2(nm), op_1(o2(n)), ..., a3 (o2(n)).

2 n—3




Starting with N3 = 321,213,132,312,123,231

321 312
213 123
132 231

M(n)jn := nM(n —1);



Starting with N3 = 321,213,132, 312,123, 231:

4321 4312
4213 4123
4132 4231

M(n)jn := nM(n —1); = nr.



Starting with N3 = 321,213,132, 312,123, 231:

4321 04 4312 o4
4213 04 4123 g4
4132 o4 4231 o4

on(nm), o2(nm), op_1(o2(n)), ..., a3 (o2(n)).
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Starting with N3 = 321,213,132,312,123,231

4321
3214
2143
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2134
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1324
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Starting with N3 = 321,213,132, 312,123, 231:

4321 o4
3 g4
2 03
4213 o4
2 04
1 03
4132 g4
1 o4
3 o3

4312 o4
3 04
1 03
4123 oq4
1 04
2 03
4231 g4
2 g4
3 03

on(nm), Ui(mr), an_1(0,2,(n7r)), . ag:i’
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Starting with N3 = 321,213,132,312,123,231
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Starting with N3 = 321,213,132,312,123,231

4321
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1423
4213
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4132
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3124
1243
2413
4123
1234
2341
3421
4231
2314
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1432

The next list is 4321, 3214, 2143, etc.

on(nm), o2(nm), on_1(c(nm)), ...
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» We noted before that every permutation appears on the list
exactly once.
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Case A: 7’ = o,_1(7) = 7za, or
Case B: 7' = 0,_»(7) = 7az.
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We noted before that every permutation appears on the list
exactly once.
But what is happening at the interfaces? Suppose
7=MN(n—1); =arzand 7’ =M(n—1)j;1. Inductively, either
Case A: 7’ = o,_1(7) = 7za, or
Case B: 7' = 0,_»(7) = 7az.
Last permutation on list for 7.
-3/ 2 —2 (2
op_i(op(narz)) = 0,5 (0n(narz))
— 2 (zma)

= ZhTa.

Case A: 0,_1(zn7a) = n7za = nop_1(w) = nn’, or
Case B: o,(znra) = nraz = nop_o(mw) = nn'.



We noted before that every permutation appears on the list
exactly once.

But what is happening at the interfaces? Suppose
7=MN(n—1); =arzand 7’ =M(n—1)j;1. Inductively, either
Case A: 7’ = o,_1(7) = 7za, or

Case B: 7' = 0,_»(7) = 7az.

Last permutation on list for 7.

oni(on(narz)) = o,%(0h(narz))
= a;_21( zna)

= ZhTa.

Case A: 0,_1(zn7a) = n7za = nop_1(w) = nn’, or
Case B: o,(znra) = nraz = nop_o(mw) = nn'.
Thus 0 — 1 (Case A) and 1 — 0 (Case B).



We noted before that every permutation appears on the list
exactly once.

But what is happening at the interfaces? Suppose
7=MN(n—1); =arzand 7’ =M(n—1)j;1. Inductively, either
Case A: 7’ = o,_1(7) = 7za, or

Case B: 7' = 0,_»(7) = 7az.

Last permutation on list for 7.

-3 -2
opilon(narz)) = 0.2 (o5(narz))
= 0,%(7zna)
= znra.

Case A: 0,_1(zn7a) = n7za = nop_1(w) = nn’, or
Case B: o,(znra) = nraz = nop_o(mw) = nn'.
Thus 0 — 1 (Case A) and 1 — 0 (Case B).

» Note also (1 2 n) (Thanks Mike!).
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The counting algorithm

Multi-radix, with 0 < a; < n—j.

aniidn---ar—00 --- 0
repeat

J<1

while aj = n—jdo aj < 0; j « j + 1; od;

aj«— aj+ 1;
until j > n;




The counting algorithm

Multi-radix, with 0 < a; < n—j.

anpidn---a 00 --- 0;
repeat
J<1
while aj = n—jdo aj < 0; j « j + 1; od;
output( [[j even @ a; <1]);
ajHaqul;
until j > n;




The loopless version

Multi-radix, with 0 < a; < n— j.

ant1an---a1+<—000 --- 0
dndn_l"-d]_<—]_11 1;
fofpo1---A <~ n+1ln-1n-2 -.. 1,
repeat

Jf; L1,

3j < aj +dj;
if ay=0o0raj=n—j
then d; « —d;; fj «— fi11; fiy1 — j+ 1, fi;
until j > n;




The loopless version

Multi-radix, with 0 < a; < n— j.

ant1an---a1+<—000 --- 0
dpdp_1---dy—111 ... 1;
fofpo1---A <~ n+1ln-1n-2 -.. 1,
repeat
J— i1,
output( [ jeven @ (aj —d; <0 or aj—d;>n—j)]);
aj « aj + dj;
if aj=0o0raj=n—j
then dj — —dj; fj — fi11; fin — j+ 1, fi;
until j > n;




How many o,'s are used?

The number, call it f,, of o,'s in ¢(S,) satisfies the recurrence

relation
o 2 ifn=1
LT 30— f, ifn> 1
Iterate: .
fo=2(=1)"=3) (~1)*(n— k),
k=1
Thus: . 3
fo~3(n—1)! S~z
3(n—1)! or i

Appears in OEIS as A122972(n + 1) as the solution to the
“symmetric” recurrence relation
a(n+1)=(n—-1)-a(n)+n-a(n—1).

The values of f, for n =1..10 are 1, 2, 4, 14, 58, 302, 1858,
13262, 107698, 980942.



A lower bound on the number of o,'s
» Observe: In any Hamilton cycle |o,_1] > (n —1)! and
lon| > n(n—2)!.
» Improvement: In any Hamilton cycle |o,| > 2n(n —2)! — 2.
Note that
0,.10n0, 100 = (n—1 n)(n—1 n) = id.

Contract the n(n — 2)! cosets of o,_1. Hamilton cycle in =,
becomes a connected spanning subgraph.

124 134

123 234

243 132
J




Ranking

I‘ank(a]_QZ LI ak—lnak—‘rl “ee an)
0 if n=1,
= - rank(aas - an) if k=1,
n—k+1+n-rank(apaxsr---an_1a1---ax) if k> 1.

The expression n — k 4+ 1 accounts for the position of the n, and
the rest comes from the recursive part of the definition of (n).

0 ifa=0=c¢,
rank( anf) = ¢ n-rank( 3 ) ifa=¢, (1)

n—|al+ n-rank( o(B)a ) otherwise ,

where o(f3) is 3 rotated one position to the right.



Open problems

» Can the results of this paper be extended in some natural way
to k-permutations of [n] for 3 < k < n—17

» Among all Hamilton cycles in =, we determined the least
number of o, edges that need to be used in a Hamilton cycle
in =,. What is the least number of o,_1 edges that need be
used? In our construction, the number of o, edges is
asymptotic to 3/n and the number of 0,1 edges is
asymptotic to (n — 3)/n. Is there a general construction that
uses more o, edges than o,_1 edges?

» It would be interesting to gain more insight in to the ranking
process. Is there a way to iterate the recursion so that it can
be expressed as a sum?



Open problems, continued

» Can the results of this paper be extended to the permutations
of a multiset? That is, given multiplicities ng, n1, ..., ng,
where n; is the number of times i occurs in the multiset and
n=ng+ ny—+---+ ng, is there a circular string ajas - - - ay of
length N = (no,nll\,l...,nt) with the property that

{ai aix1 -+ aixn—2 t(aj,ai+1,- .., ai4n—2) | 1 < i < N}

is equal to the set of all permutations of the multiset. Since
the length of ajaj;1---aj4p—2 is n — 1 it is not a permutation
of the multiset; one character is missing. The function ¢ gives
the missing character. We call these strings

. The current paper gave a shorthand cycle for
permutations of [n].



News flash

Dear Frank,

| finally have gotten Section 7.1.4 to the point where | could take a
small breath and look at the mail that has come in since last
summer about the other fascicles and prefascicles.

One of the most exciting things, of course, was to learn about
Aaron’s nice explicit universal cycles of permutations. In the next
printing of Volume 4 Fascicle 2 | shall replace exercise 7.2.1.2-112
by two exercises, 112 and 113; 112 asks for (and gives hints
towards) Aaron's explicit construction, while 113 is the former 112.
These updates will be posted in the TAOCP errata listing all4f2.ps,
later this week. | also stuck in a very brief mention of the multiset
case, although you have apparently not yet written that paper.
Beautiful: stringology is really coming of age!

Thanks again for keeping me informed.
Best regards, Don



The end

Thanks for coming!
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