Limit probabilities of random Boolean expression values

Alexey Yashunsky

Moscow State University, Russia

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees.

(1A0)V(0V1)

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees.

(1A0)v(Ovl) =1

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees.

(1A0)v(Ovl) =1

expression value

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees.

(1A0)v(Ovl) =1
expression value

1 O 01

Complexity = number of nodes.

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees. Randomization.

(1A0)v(Ovl) =1
expression value

1 O 01

n nodes

Complexity = number of nodes.

A.D. Yashunsky (MSU, Russia) Random Boolean expressions



Boolean expressions

Expressions, values, trees. Randomization.

(1A0)v(Ovl) =1
expression value

1 O 01

n nodes

Probability function
Complexity = number of nodes. Pi(p) = lim Py1,(p).
n—oo
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The method of investigation

Truth tables for basis functions

Characteristic and basis polynomials

Formal languages and Schutzenberger's method
Algebraic equations for probability generating functions
Drmota-Lalley—Woods theorem

Probability functions
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Characteristic and basis polynomials

@ Examples
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Characteristic and basis polynomials

@ Examples

Truth tables

X y‘x/\y‘x\/y‘xxory
0 0 0 0 0
01 0 1 1
10 0 1 1
11 1 1 0
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Characteristic and basis polynomials

@ Examples
Truth tables Characteristic polynomials
X y‘x/\y‘x\/y‘xxory
00 0 0 0 ANT,F)=T?
01| 0 1 1 Au(T,F) =
1 0| 0 1 1 =TF+FT + T2=2TF + T?
11 1 1 0 Axor(T,F)=TF+ FT =2TF
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Characteristic and basis polynomials

@ Examples
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Characteristic and basis polynomials

@ Examples
Truth tables Characteristic polynomials
X y‘x/\y‘x\/y‘xxory
00 0 0 0 ANT,F)=T?
01| 0 1 1 Au(T,F) =
1 0| 0 1 1 =TF+FT + T2=2TF + T?
11 1 1 0 Axor(T,F)=TF+ FT =2TF

o General case.
For & = (a1,...,an) € {0,1}" let |&| = #{i : aj = 1}.
Then Ar . s)(T,F) = 2 f(a)TIal Fr—lal,
ae{0,1}n
o Characteristic polynomial for basis B = {f1,..., fig|}:
A(T,F)=>As.

1
@ Basis polynomial. For basis B let By denote the subset of functions
with exactly k variables. The polynomial for B: B(S) = 3_ |By|S*.
k
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Probability functions

Let B be a basis and B(S), A(T, F) its basis and chararcteristic
polynomials. Then Vp € (0,1) the limit Py(p) = lim Py ,(p) exists and:
n—oo

A(r,0 —T)

Py(p) —
1(p) 1AL (1,0 —T)+ A(T,0 — T)’

w

where w and o are the solution to

{ o=1+wB(o)
1=wB'(0)

,and T =7(p), 0 < 7 < o is the unique solution of
T=p+wA(r,0 — 7).
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Probability functions

|
\

\
EEEmEmmsmcmamRED

B = {A,V}: B = {Vv,x}: B = {nor}:

P1(p) = p- Pi(p)=1—- —L Pi(p) =1 — —2—.
1(p) = P 1(P) Y W 1(p) >
B ={A,V,x}: B = {A,x}: B = {nand}:

Pi(p) = 28 (p + 3 — V/6). P(p)= —— L Pi(p) = —A_.
1(p) 55— (P ) 1(p) I ST 1(p) iz
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Approximation by probability functions

Let f(p) be a continuous function f : [0,1] — [0,1]. For any € > 0 there
exists a basis B with probability function P1(p), such that for every
p€[0,1]:

If(p) — Pi(p)| <e.
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exists a basis B with probability function P1(p), such that for every
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Approximation by probability functions
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Approximation by probability functions

Let f(p) be a continuous function f : [0,1] — [0,1]. For any € > 0 there
exists a basis B with probability function P1(p), such that for every
p€[0,1]:

If(p) — Pi(p)| <e.

e |f(p)—3r(fp)|§€/4
o |5, (f,p) —a(p) <e/4
e a(p) = %

o |a(p) — Pi(p)| <e/2
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That's all.

Thank You for Your attention!
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