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Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1)

= 1
expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1) = 1

expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1) = 1
expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1) = 1
expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1) = 1
expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Boolean expressions

Expressions, values, trees.

(1 ∧ 0̄) ∨ (0 ∨ 1) = 1
expression value

Complexity = number of nodes.

Randomization.

Probability function
P1(p) = lim

n→∞
P1,n(p).

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 2 / 9



Related research

Probability and complexity of functions computed by random Boolean
formulas:

Lefmann H., Savick�y P. Some typical properties of large AND/OR
Boolean formulas, 1997.

Chauvin B., Flajolet Ph., Gardy D., Gittenberger B. And/Or trees
revisited, 2004.

Probability ampli�cation by Boolean functions:

Goldman S., Kearns M., Schapire R. Exact identi�cation of read-once
formulas using �xed points of ampli�cation functions, 1993.

A.D. Yashunsky (MSU, Russia) Random Boolean expressions 3 / 9



The method of investigation

Truth tables for basis functions

Characteristic and basis polynomials

Formal languages and Schutzenberger's method

Algebraic equations for probability generating functions

Drmota�Lalley�Woods theorem

Probability functions
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Characteristic and basis polynomials

Examples

Truth tables
x y x ∧ y x ∨ y x xor y

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Characteristic polynomials

A∧(T ,F ) = T 2

A∨(T ,F ) =
= TF + FT + T 2 = 2TF + T 2

Axor(T ,F ) = TF + FT = 2TF

General case.
For α̃ = (α1, . . . , αn) ∈ {0, 1}n let |α̃| = #{i : αi = 1}.
Then Af (x1,...,xn)(T ,F ) =

∑
α̃∈{0,1}n

f (α̃)T |α̃|F n−|α̃|.

Characteristic polynomial for basis B = {f1, . . . , f|B|}:
A(T ,F ) =

∑
i

Afi .

Basis polynomial. For basis B let Bk denote the subset of functions
with exactly k variables. The polynomial for B : B(S) =

∑
k

|Bk |Sk .
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Probability functions

Theorem

Let B be a basis and B(S), A(T ,F ) its basis and chararcteristic

polynomials. Then ∀p ∈ (0, 1) the limit P1(p) = lim
n→∞

P1,n(p) exists and:

P1(p) =
A′F (τ, σ − τ)

ω−1 − A′T (τ, σ − τ) + A′F (τ, σ − τ)
,

where ω and σ are the solution to{
σ = 1 + ωB(σ)
1 = ωB ′(σ)

with the least |ω|, and τ = τ(p), 0 ≤ τ ≤ σ is the unique solution of

τ = p + ωA(τ, σ − τ).
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Probability functions

Example

B = {∧,∨}: B = {∨, x̄}: B = {nor}:
P1(p) = p. P1(p) = 1− 1

2
q

2+
√

2+(3+2
√

2)p
. P1(p) = 1− 1√

3−p
.

B = {∧,∨, x̄}: B = {∧, x̄}: B = {nand}:
P1(p) = 7+2

√
6

25
(p + 3−

√
6). P1(p) = 1

2
q

5+3
√

2−(3+2
√

2)p
. P1(p) = 1√

2+p
.
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Approximation by probability functions

Theorem

Let f (p) be a continuous function f : [0, 1]→ [0, 1]. For any ε > 0 there

exists a basis B with probability function P1(p), such that for every

p ∈ [0, 1]:
|f (p)− P1(p)| < ε.

1

1

Proof

|f (p)− βr (f , p)| ≤ ε/4

|βr (f , p)− α(p)| ≤ ε/4

α(p) = A(p,1−p)
|B|

|α(p)− P1(p)| ≤ ε/2

|f (p)− P1(p)| ≤ ε
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That's all.

Thank You for Your attention!
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