
Cosc 241
Programming and Problem Solving

Lecture 3 (2/3/2020)
Algorithms

Michael Albert
michael.albert@cs.otago.ac.nz

1

Keywords: algorithm, pseudocode,
efficiency

mailto:michael.albert@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Algorithmic_efficiency


Lecture outline

I What is an algorithm?
I History
I Examples

I Measuring efficiency/cost

2



What is an algorithm?

I An algorithm is a description of a series of basic steps that
achieve some specified result.

I The description of each step must be precise.
I The sequence of steps followed must be rigorously and

unambiguously defined, but may depend on available
information.

I An algorithm may have some input values.
I An algorithm may (in practice, will) have some outputs, or

side effects that bring about the specified result.
I A useful algorithm is guaranteed to terminate in a finite

number of steps!

3



What is a basic step?

I It depends!
I An algorithm is a description of a procedure that is

intended to be carried out.
I The notion of a basic step depends on who/what is going

to be executing the algorithm.
I If it is a computer, then a basic step might be as basic as:

“add a to b and store the result in c” (or as complicated as
“Open a new window in which the user can enter text”).

I If it is a human, then it might well depend on his/her skill or
experience (“make 500ml of Béchamel sauce” or “Place a
heavy saucepan over low heat . . . ”).

4



History

I We have a long tradition of telling people what to do and
how to do it!

I In ancient India, China, Sumeria, Egypt, Greece various
algorithms relating mostly to geometry (and surveying) and
arithmetic.

I The Persian mathematician al-Khwarizmi (c. 800 CE)
described many arithmetic, algebraic, and geometric
algorithms. The word algorithm is derived from the Latin
translation of his name.

I Not until the 1930’s was the notion of algorithm formalised
(Turing, Church) and the development of electronic
computing has led to its intensive study.

5

http://www.bbc.co.uk/programmes/b08dr5qt
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Alonzo_Church


Try this

Describe to your neighbour an algorithm for one of the following
objectives, then have them describe an algorithm for another
one:
I Get to the Dunedin railway station from here.
I Make a paper airplane.
I Find the meaning of the word “sesquipedalian”.
I Get an A in COSC241.

6



Example

Problem: Given a positive integer n, determine whether or not
it is a perfect square.

Algorithm 0: Compute the square of each successive positive
integer from 1 to n. If the answer is ever n, answer “Yes” (and
halt). Otherwise, answer “No” (and halt).

That’s a high level description in English.

7



Example

Problem: Given a positive integer n, determine whether or not
it is a perfect square.

Algorithm 0
i ← 1
while i ≤ n do

if i2 = n then
Answer “yes”, halt.

end if
i ← i + 1

end while
Answer “no”, halt.

8



From algorithms to programs

I The more abstract the language we use to describe an
algorithm, the closer it is to a computer program.

I So why bother? Why not just write a program that
expresses the algorithm?

I Because a program carries a lot of baggage (boilerplate,
exception handling, input/output) which often obscures the
essential nature of the algorithm.

I Still, it’s a good habit to try and write programs whose
underlying algorithms shine through.

9



Efficiency and cost

I For computing there are two things we need to worry about
when thinking about implementing an algorithm: time and
space.

I For time, we usually measure the number of basic steps
(e.g., single arithmetic operations) required by an algorithm
based on some measure of the size of its input.

I For space, we consider the amount of memory required by
the algorithm as its “working area” again, as it relates to
the size of the input.

I Initially we don’t need to worry too much about details –
ballpark estimates will allow us to compare two competing
algorithms.

I We will see how to do this in general next week.

10



How efficient is Algorithm 0?

I In each iteration of the loop we do one multiplication, two
comparisons, and one increment.

I Outside of the loop we only do an assignment.
I The loop body is executed either n times (if n is not a

perfect square), or
√

n times (it if is).
I So, the total number of operations in the worst case, is

something like 4n (or maybe multiplications cost more than
the other operations?)

I In analysing efficiency, we always focus on the worst case.

11



Improving Algorithm 0

I Algorithm 0 is much more efficient when n is a perfect
square than when it isn’t.

I Is there any way we can arrange that the two cases aren’t
so different?

I Yes! If we notice that the values of i2 always increase as i
does. So, once we get past n we can be sure that we’ll
never hit it.

I In words: starting from 1 compute the squares in
succession; if you ever hit n then answer yes and halt,
otherwise, as soon as you pass n answer no and halt.

12



Algorithm 1

i ← 1
while i2 ≤ n do

if i2 = n then
Answer “yes”, halt.

end if
i ← i + 1

end while
Answer “no”, halt.

Now we do (some constant)×
√

n operations whether or not n
is a perfect square.

13



Are we happy?

I The keen algorithmicist (I just made that word up) is never
happy, unless convinced that an algorithm is as efficient as
it could possibly be.

I But how do you know?
I Look for places where there’s room for improvement, or

imagine being able to guess really well.
I If we could guess the integer k at, or just below,

√
n, then

just by looking at k2 and (k + 1)2 we could prove whether
or not n was a perfect square.

I So in the “really good guessing” model we might hope for a
constant number of operations.

I More realistically, the obvious place where we have
inefficiency is in i ← i + 1. If n is large, then we waste a lot
of time computing small squares.

14



A new idea

I Start as usual at 1, and compute squares. Each time the
result is less than n, double the number you’re squaring
until the result is larger than n.

I Now the square root of n lies between the final value you
squared (which was too big), and half that value.

I You could now just scan through that interval (as in
Algorithm 1 say), but having had this idea you’ll probably
think of

I looking at the midpoint! This is either too big, too small, or
just right.

I In any case you either have a new set of candidate values
which is half as big as before, or you’re done.

I Trust me, the efficiency is now (some constant)× log n and
that’s a lot better!

15



Algorithm 2
i ← 1
while i2 ≤ n do

i ← 2× i
end while
high← i , low ← i/2
If low2 = n then answer yes and halt
while high − low > 1 do

mid ← (high + low)/2
if mid2 = n then

Answer yes and halt
else if mid2 < n then

low ← mid
else

high← mid
end if

end while
Answer no and halt

16



Counting loops

n Algorithm 0 Algorithm 1 Algorithm 2
10 10 3 3

100 10 10 6
1000 1000 31 9

10000 100 100 11
100000 100000 316 17
1000000 1000 1000 16

10000000 1000000 3162 23
100000000 10000 10000 23

1000000000 1000000000 31622 29
10000000000 100000 100000 28

100000000000 Too long! 316227 37

17


