
Cosc 241
Programming and Problem Solving

Lecture 4 (5/3/20)
Recursion

Michael Albert
michael.albert@cs.otago.ac.nz

1

Keywords: recursion, iteration

mailto:michael.albert@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Iteration


What happens if?

I We are accustomed to writing programs with methods that
call other methods.

I What would happen if a method called itself?

As a general concept, recursion is the process of defining
something in terms of itself.

The problem is to avoid circularity which in programming terms
leads to infinite loops, or non-termination.

2



Recursive definition

A string is either:
I empty, or
I a character followed by another string.

Despite the fact that the definition of string uses the concept of
string, there is no circularity, because of the ‘basic’
non-recursive case (the empty string).

In a general recursive definition objects are defined as either:
I certain basic objects (non-recursive case), or
I formed from simpler objects by certain rules (recursive

case).

3



How to grade a stack of exam papers recursively

if the stack is empty then
Stop! Have fun!

else
Grade one paper
Grade the remaining stack of papers

end if

I Here we are applying a recursive method
I Again there is a basic non-recursive case (a stack of 0

papers).
I And a recursive case (‘grade the remaining stack’) which is

simpler because the stack is one smaller.

4



Try this

I How does recursion arise in evaluating a complicated
mathematical expression like:

3 + 5× (23− 120÷ (2 + 6)) + 117

I Imagine you have to use a physical dictionary. How does
recursion arise in searching for a word like
“sesquipedalian”?

I Are there any day-to-day activities that you think of
recursively?

5



Recursion in mathematics

0! = 1
n! = n × (n − 1)! for n > 0

This defines the factorial function in terms of itself – is that a
problem? No, we can trace a computation:

3! = 3× 2!
= 3× 2× 1!
= 3× 2× 1× 0!
= 3× 2× 1× 1
= 6.

6



Factorial in Java

public class FacRec{

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
System.out.println(n + "! = " + factorial(n));

}

public static long factorial(int n) {
if (n == 0) return 1;
return n*factorial(n-1);

}

}

This works!

7



Why not?

public class FacIt{

public static void main(String[] args) {
int n = Integer.parseInt(args[0]);
System.out.println(n + "! = " + factorial(n));

}

public static long factorial(int n) {
long fac = 1;
for(int i = 1; i <= n; i++)

fac *= i;
return fac;

}

}

Because this is a lecture on recursion!

8



So how does it work?

I Method calls get added to a stack.
I Whenever a method calls another one (or itself), its state is

stored, execution is temporarily suspended, and the new
method begins execution.

I When a return statement (in any method) is
encountered, that method is removed from the stack and
the value returned (if any) supplied to its caller.

I There is some overhead involved.
I More on stacks (in general) later!

9



Recursion in game playing

I Managing a two player game is a good example of where
recursion can simplify code.

I “Run the game” means “check whether the game is over”
(base case), or “do a turn and change players” then “run
the game”

I Loop structures often turn out to be awkward but this basic
play control works in any game with alternating players
(and can be modified to allow for more than two players).

Play(g, currentPlayer , nextPlayer ):
if the game is over then

Announce the winner. Halt/return.
end if
Get a move in g from currentPlayer
Apply the move to g (which changes g to a simpler game)
Play(g, nextPlayer , currentPlayer )

10



Towers of Hanoi

11

I A puzzle invented by French mathematician
Édouard Lucas in 1883.

I There are three rods and a set of discs of
differing sizes.

I Initially, the discs are on a single rod in order of
size, smallest at the top.

I The problem is to move them all to one of the
other rods, shifting one disc at a time, and never
placing a larger disc on top of a smaller one.



A plan

I Call the rods A, B and C, and the discs 1, 2, . . . , n (with 1
being the smallest).

I The object is to move all the discs from A to B.
I What has to be the case when we move disc n?
I All the other discs must be on C.
I That is, we have to solve the n − 1 disc problem from A to

C first, then move disc n, then solve the n − 1 disc problem
from C to B.

I That’s recursion!

12



An algorithm

Move(n, source, dest , extra):
if n = 0 then

return
end if
Move(n − 1, source, extra, dest)
source→ dest
Move(n − 1, extra, dest , source)

13



An implementation

public class Hanoi{

public static void main(String[] args){
hanoi(Integer.parseInt(args[0]), "A", "B", "C");

}

public static void hanoi(int n,
String source, String dest, String extra) {

if (n == 0) return;

hanoi(n-1, source, extra, dest);
System.out.println(source + " --> " + dest);
hanoi(n-1, extra, dest, source);

}

}

14



Recursion vs iteration

I Every problem that can be solved recursively can also be
solved iteratively (at worst, by representing the call stack
explicitly).

I But, if a problem, solution, or data structure is naturally
described recursively, then a recursive implementation is
likely to be simpler, and more likely to be correct.

I In some sense, the default should be to use an iterative
solution unless the problem is naturally cast recursively.

I Among our examples, factorial is more naturally done
iteratively, but Hanoi should be done recursively.

15



A cautionary tale

I The Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, . . .
I Defined by the rule ‘each element is the sum of the

preceding two’.
I Mathematically:

f0 = 1, f1 = 1
fn = fn−1 + fn−2 for n ≥ 2

Fib(n):
if n ≤ 1 then

return 1
else

return Fib(n − 1) + Fib(n − 2)
end if

16



What’s the problem?

I All the indicators seem right for recursion.
I An implementation will work fine for small n.
I For n ∼ 40 it starts to get a bit slow.
I For n ∼ 50 it takes unacceptably long.
I What’s going on? After all, to calculate each successive

Fibonacci number only requires one extra addition!
I The problem is that the recursive algorithm doesn’t ‘know’

Fib(n− 2) even after it has computed Fib(n− 1), so it starts
from scratch

I The double recursive call creates an exponential blow up in
the number of actual method calls.

17


