
Cosc 241
Programming and Problem Solving

Lecture 5 (9/3/20)
Analysis of Algorithms (1)

Michael Albert
michael.albert@cs.otago.ac.nz

1
http://xkcd.com/399/

Keywords: Big-Oh

mailto:michael.albert@cs.otago.ac.nz
http://xkcd.com/399/
https://en.wikipedia.org/wiki/Big_O_notation


Algorithmic efficiency

I There are two principal types of algorithmic efficiency that
are important: time efficiency, and space (memory)
efficiency.

I Of these, the first is more commonly critical, and will be the
one which we discuss in COSC241.

I We seek a quantitative notion of efficiency which
nevertheless ignores insignificant details like clock rate,
machine load, or compiler optimisations.

I The key insight is that most problems have a natural size
parameter (usually denoted n) and the critical issue is how
the performance of the algorithm changes as n grows.

2

https://en.wikipedia.org/wiki/Clock_rate
http://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.win.80.doc/diag/understanding/jit_overview.html


Some possibilities

I The algorithm might run in (roughly) the same amount of
time, no matter what n is.

I When n doubles, the algorithm might take (roughly) some
constant number of extra steps.

I When n doubles, the algorithm might take (roughly) twice
as long.

I When n increases by some constant amount, the algorithm
might take (roughly) twice as long.

I How can we capture all of these possiblities, including the
“(roughly)” part?

3



Discussion

Imagine that we could agree on exactly what constituted a
“basic step”. We might then find that the number of steps
required by an algorithm was:

17 + 5n + 3n2dlog ne+ 7× 2n.

The actual time required (on a particular computer, under
identical load conditions) would be some constant multiple
(steps per second) of this.
But the important thing is that in the expression above, there is
one term that is much larger than all the others (at least for any
significantly large value of n).

4



A working compromise

I Ignore inessential pieces of the exact formula.
I In fact, don’t even worry about computing the exact

formula, concentrate on producing upper bounds that are
correct up to a constant factor.

I Assume that n is going to be large.

5



Big-Oh notation

I Suppose that f (n) and g(n) are two functions of n.
I We write

f (n) = O(g(n))

if, for some constant A, f (n) ≤ Ag(n) for all sufficiently
large n.

I That is, up to some constant factor, g(n) provides an upper
bound for f (n).

I Normally, f (n) is some complicated, perhaps not exactly
known, expression and g(n) is some simplified version.

I If f (n) = O(g(n)) then essentially, f (n) grows no more
quickly than g(n) does.

6



A sample computation

We have
3 + 5n2 + 7n3 = O(n3)

because for all positive integers n:

3 + 5n2 + 7n3 ≤ 3n3 + 5n3 + 7n3 = 15n3.

By a similar argument, any polynomial (sum of fixed powers of
n) is O of the highest power that occurs.

Many O computations/verifications are a bit more complicated
than this, but none ever need any advanced maths. The fact
that you can ignore all the small fiddly bits actually makes
things easier!

7



Try this (2 minutes)

True or false?

I 3 + 5n + 18n2 = O(n)
I 3 + 5n + 18n2 = O(n2)

I 3 + 5n + 18n2 = O(n3)

I 3n = O(n3)

I n3 = O(3n)

8



The scale of growth rates

I One of the main reasons for using the O notation is that it
provides a scale of common growth rates for functions (and
the efficiency of algorithms).

I From least quickly growing (= most efficient!), to most
quickly growing:

1, log n,
√

n, n, n log n, n2, n3, 2n.

I Algorithms whose time complexities have growth rates
near the beginning of this list are to be preferred.

I In practice, algorithms with growth rates like 2n are
generally impractical except for very small values of n.

9



Practicalities
You will learn to recognize certain common scenarios which
may or may not contribute to the essential time complexity of an
algorithm:

I pre and post-processing usually take a constant amount of
time, O(1), and can often be ignored;

I a simple for loop from 0 to n (with no internal loops),
contributes O(n) (linear complexity);

I a nested loop of the same type (or bounded by the first
loop parameter), gives O(n2) (quadratic complexity);

I a loop in which the controlling parameter is divided by two
at each step (and which terminates when it reaches 1),
gives O(log n) (logarithmic complexity);

I the “divide and conquer” paradigm (later!) which breaks
the problem into two instances of size n/2 which must then
be combined in linear time gives O(n log n).

10



Square testing revisited

Algorithm 0
i ← 1
while i ≤ n do

if i2 = n then
Answer “yes”, halt.

end if
i ← i + 1

end while
Answer “no”, halt.

We have a single loop, executed n times (in the worst case). So
the complexity is O(n).

11



Algorithm 1

i ← 1
while i2 ≤ n do

if i2 = n then
Answer “yes”, halt.

end if
i ← i + 1

end while
Answer “no”, halt.

Now we do (some constant)×
√

n operations whether or not n
is a perfect square, i.e. the complexity is O(

√
n).

12



Algorithm 2
i ← 1
while i2 ≤ n do

i ← 2× i
end while
high← i , low ← i/2
If low2 = n then answer yes and halt
while high − low > 1 do

mid ← (high + low)/2
if mid2 = n then

Answer yes and halt
else if mid2 < n then

low ← mid
else

high← mid
end if

end while
Answer no and halt

13

A bit more complicated!



Analysis of Algorithm 2
I In the first loop, we keep doubling i until it’s bigger than√

n. That is, until we have:

2k = i >
√

n

which means
k > log n/2.

So that loop is O(log n).
I Now we have high and low which differ by i/2, i.e., by at

most
√

n.
I In the next loop, we calculate their average, and it replaces

one or the other of them (or we terminate).
I So their difference goes down by a factor of two each time

through that loop.
I In the worst case, that’s another O(log n).
I And so the whole thing is O(log n).

14


