
Cosc 241
Programming and Problem Solving

Lecture 6 (12/3/20)
Analysis of recursive algorithms

Michael Albert
michael.albert@cs.otago.ac.nz

1

mailto:michael.albert@cs.otago.ac.nz


Factorial

Factorial(n):
if n = 1 then

return n
else

return n × Factorial(n − 1)
end if

How many multiplications, f (n), are required?

If n = 1, f (n) = 0. If n > 1 then f (n) = 1 + f (n − 1). So
f (n) = n − 1, in particular f (n) = O(n).

General rule: “constant plus previous case” gives O(n).

2



Greatest common divisor

I How can we compute the greatest common divisor of two
positive integers a and b (suppose that a ≤ b)?

I First case, a is a divisor of b, then the answer is a.
I Otherwise, the answer is the greatest common divisor of a

and the remainder when b is divided by a.
I Can collapse first case into second by remembering that

gcd(0,b) = b for all b.

GCD(a, b):
if a = 0 then

return b
end if
return GCD(b %a, a)

3



Sample computation

gcd(15,24) = gcd(9,15)
= gcd(6,9)
= gcd(3,6)
= gcd(0,3)
= 3

I How many steps (i.e., recursive calls) might this require in
the worst case?

I As we see above, we could well have b %a quite large
relative to a.

I But, if it is > a/2 then the next remainder is < a/2, while if
is ≤ a/2 then the next remainder is smaller still.

I The first argument is reduced by a factor of at least 2 every
two steps.

4



How often can we divide by two?

I If a < 2n, then after n integer divisions by two, we will get 0.
I So if we take the logarithm (base 2) of a and round up –

that many divisions kills us.
I In other words, the number of calls in GCD is at worst

2 log a. We can actually do a bit better than this but don’t
care because constants.

I Its complexity is O(log a).
I General rule: any recursive algorithm where the size

reduces by a constant factor (greater than 1) in one call
has complexity O(log n) (and that’s good!)

5



Recursive Fibonacci
Fib(n):

if n ≤ 1 then
return 1

end if
return Fib(n − 1) + Fib(n − 2)

I How much work to compute Fib(n)? Call the amount of
work, f (n).

I One test, one arithmetic operation, one call to Fib(n − 1)
and one to Fib(n − 2), so:

f (n) = 2 + f (n − 1) + f (n − 2)

I The amount of work done behaves like the Fibonacci
numbers themselves, and they grow exponentially.

I General rule: two (or more) recursive calls where the size
reduces by a constant amount leads to exponential
complexity (bad!)

6



Computing powers

Problem: Evaluate an

I A naive recursive (or iterative) algorithm uses a1 = a,
an = a× an−1 and has complexity O(n) (in fact, does
exactly n − 1 multiplications).

I Can we do better?
I First thing to observe is that if n is even, we frequently can,

e.g.,
a6 = (a2)3 = (a× a)3

I Since we can first compute a2 (one multiplication), then
compute the third power of that (two multiplications), we
use three multiplications instead of five.

I But what about the odd case?

7



Clever powering

Power(a, n):
if n = 0 then

return 1
end if
p ← Power(a× a,n/2) (integer division)
if n%2 = 1 then

p ← a× p
end if
return p

In the worst case we do one test, one multiplication (a× a), one
call reducing n by a factor of 2, one more test, and one more
multiplication. By our general rules, that’s O(log n).

8



Big-Oh algebra

I The O can absorb a lot of stuff for instance:
I if f (n) = O(g(n)) then 100f (n) + 3g(n) = O(g(n)),
I if f (n) = O(g(n)) and g(n) = O(h(n)) then f (n) = O(h(n))

I The important thing is to remember to read f (n) = O(g(n))
as “(some multiple of) g grows at least as quickly as f ”, and
then use common sense.

9


