Cosc 241
Programming and Problem Solving
Lecture 7 (16/3/20)

Arrays

Michael Albert
michael.albert@cs.otago.ac.nz

OTAGO
Keywords: arrays, insertion, deletion, %
linear and binary search

mailto:michael.albert@cs.otago.ac.nz

Arrays in general

» An array is a named sequence of elements, referred to by
position (or index).

» The length (or size) of an array is fixed when it is
constructed.

» The index of an array element ranges from a lower bound
to an upper bound.

» An array element can be accessed using its index in O(1)
time.

Try this (1 minute)

Arrays are for storing stuff.
» Which physical storage types correspond to arrays?
» Which don’t?
> Why?

Java specifics

> A Java array of length n has lower bound 0 and upper
bound n— 1.

» A Java array’s elements either belong to some fixed
primitive type, or belong to some specified class’.

» Note that this class could be abstract or an interface, e.g.,
an array of objects of type PigPlayer was used in
Lecture 2 though it is not possible to create a PigPlayer
object.

» A Java array, holding objects of type T, and of length nis
allocated dynamically by the statement new T [n].

> Arrays can also be created and initialized simultaneously.

'But, because this class could be object, an array can (but shouldn’t)
include objects of mixed types

Subarrays

| 2

>

v

A subarray is a sequence of consecutive elements in some
larger array.

Frequently, array algorithms, especially recursive ones, will
manipulate elements of a subarray rather than the entire
array.

| will refer to the subarray beginning at position /left and up
to but not including position right in the array a as

alleft. .. right).

This notation is not supported in Java.
The length of this subarray is right — left.

The choice not to include the right hand endpoint is
generally consistent with Java’s conventions, and makes
“off by one” errors in loops slightly less likely (but still
common!)

Insertion

Problem: Given a subarray a[left. .. right) insert a value, val, at
position ins. If necessary, move elements one position right to
accommodate it.

» Copy the elements in positions ins onwards one place to
the right (so long as room still exists).
» Replace a[ins] by val.

Analysis:

» Let n = right — left be the size of the subarray

» We do one operation in each position from ins to right — 1
inclusive, i.e right — ins operations.

» In the worst case, this could be n, so the time complexity is
Oo(n).
» Inserting near the right hand end is cheapest.

Insertion implementation

public static void insert (int[] a, int index, int value) {
insert (a, index, 0, a.length, value);

public static void insert (int[] a, int index,
int left, int right,
int value) {

if (index < left || right <= index) return;
or (int dest = right-1; dest > index; dest--) {
aldest] = al[dest-1];

}

alindex] = value;

Deletion

Problem: Given a subarray a[left . .. right) delete the value at
position ins. If necessary, move elements one position left to fill
the gap (leaving a gap at the end).

» Copy the elements in positions ins + 1 onwards one place
to the left until we reach the end.

Analysis:

» Let n = right — left be the size of the subarray.

» We do one operation in each position from ins to right — 1
exclusive, i.e right — ins — 1 operations (one more if we fill
the right hand end with a ‘gap’ indicator).

> In the worst case, this could be n, so the time complexity is
Oo(n).

» Deleting near the right hand end is cheapest.

Deletion implementation

public static void delete (int][]

delete(a,

public static void delete (int[]

index, O,

alright-1]

<

left ||

index+1;
alil;

GAP;

a.length);

a, int index)

a, int index,

int left, int right)

right <= index)

i < right;

i++)

return;

{

{

Search
Problem: Given a subarray a[left. .. right) determine whether
or not it contains a particular value, val (and if so, return a
single index at which it occurs).
» If nothing is known about the order in which values are
stored, we can do no better than linear search.
» Inspect the actual values from left to right — 1 and if one
matches value return its index.
» Otherwise return some ‘not found’ indicator (usually -1).
Analysis:
» Let n = right — left be the size of the subarray.
» We do one operation in each position from left to right — 1
inclusive until we find the value.
> In the worst case (not found), this could be n, so the time
complexity is O(n).
» Finding items that are near the beginning of the list is
cheapest.

Linear search implementation

public static int search(int[] a,
return search(a, 0, a.length,

public static int search(int[] a,

int value) {
value) ;

int left,

int right, int value)

for(int i = left; i < right; i++) {
[

if (a

—

return NOT_FOUND;

i] == value) return i;

{

Binary search
Problem: Given a subarray a[left. .. right) whose values are
known to be in increasing order determine whether or not it
contains a particular value, val (and if so, return a single index
at which it occurs).
» We could modify linear search to return once we exceed
the target value (with ‘not found’) but can do much better.
» Check the midpoint — this either finds the value or gives us
a new range to search in which is only half the size.
» Implement recursively.
Analysis:
» Let n = right — left be the size of the subarray.
> In one comparison, we either find the value, or cut the
subarray size in 2.
» In the worst case (not found), we will require log, n
“halvings” so the complexity is O(log n).
» There is no particular preferred range of locations.

Binary search implementation

public static int binarySearch(int[] a, int value) {
return binarySearch(a, 0, a.length, value);

public static int binarySearch(int[] a, int left,
int right, int value)
if (right <= left) return NOT_FOUND;
int mid = (right + left)/2;

if (a[mid] == value) return mid;

if (a[mid] > value)
return binarySearch(a, left, mid, value);

return binarySearch(a, mid+l, right, value);

{

