
Cosc 241
Programming and Problem Solving

Lecture 7 (16/3/20)
Arrays

Michael Albert
michael.albert@cs.otago.ac.nz

1

Keywords: arrays, insertion, deletion,
linear and binary search

mailto:michael.albert@cs.otago.ac.nz

Arrays in general

I An array is a named sequence of elements, referred to by
position (or index).

I The length (or size) of an array is fixed when it is
constructed.

I The index of an array element ranges from a lower bound
to an upper bound.

I An array element can be accessed using its index in O(1)
time.

2

Try this (1 minute)

Arrays are for storing stuff.

I Which physical storage types correspond to arrays?
I Which don’t?
I Why?

3

Java specifics

I A Java array of length n has lower bound 0 and upper
bound n − 1.

I A Java array’s elements either belong to some fixed
primitive type, or belong to some specified class1.

I Note that this class could be abstract or an interface, e.g.,
an array of objects of type PigPlayer was used in
Lecture 2 though it is not possible to create a PigPlayer
object.

I A Java array, holding objects of type T, and of length n is
allocated dynamically by the statement new T[n].

I Arrays can also be created and initialized simultaneously.

1But, because this class could be Object, an array can (but shouldn’t)
include objects of mixed types

4

Subarrays

I A subarray is a sequence of consecutive elements in some
larger array.

I Frequently, array algorithms, especially recursive ones, will
manipulate elements of a subarray rather than the entire
array.

I I will refer to the subarray beginning at position left and up
to but not including position right in the array a as
a[left . . . right).

I This notation is not supported in Java.
I The length of this subarray is right − left .
I The choice not to include the right hand endpoint is

generally consistent with Java’s conventions, and makes
“off by one” errors in loops slightly less likely (but still
common!)

5

Insertion

Problem: Given a subarray a[left . . . right) insert a value, val , at
position ins. If necessary, move elements one position right to
accommodate it.

I Copy the elements in positions ins onwards one place to
the right (so long as room still exists).

I Replace a[ins] by val .

Analysis:

I Let n = right − left be the size of the subarray
I We do one operation in each position from ins to right − 1

inclusive, i.e right − ins operations.
I In the worst case, this could be n, so the time complexity is

O(n).
I Inserting near the right hand end is cheapest.

6

Insertion implementation

public static void insert(int[] a, int index, int value) {
insert(a, index, 0, a.length, value);

}

public static void insert(int[] a, int index,
int left, int right,
int value) {

if (index < left || right <= index) return;
for(int dest = right-1; dest > index; dest--) {

a[dest] = a[dest-1];
}
a[index] = value;

}

7

Deletion

Problem: Given a subarray a[left . . . right) delete the value at
position ins. If necessary, move elements one position left to fill
the gap (leaving a gap at the end).

I Copy the elements in positions ins + 1 onwards one place
to the left until we reach the end.

Analysis:

I Let n = right − left be the size of the subarray.
I We do one operation in each position from ins to right − 1

exclusive, i.e right − ins − 1 operations (one more if we fill
the right hand end with a ‘gap’ indicator).

I In the worst case, this could be n, so the time complexity is
O(n).

I Deleting near the right hand end is cheapest.

8

Deletion implementation

public static void delete(int[] a, int index) {
delete(a, index, 0, a.length);

}

public static void delete(int[] a, int index,
int left, int right) {

if (index < left || right <= index) return;

for(int i = index+1; i < right; i++) {
a[i-1] = a[i];

}
a[right-1] = GAP;

}

9

Search
Problem: Given a subarray a[left . . . right) determine whether
or not it contains a particular value, val (and if so, return a
single index at which it occurs).
I If nothing is known about the order in which values are

stored, we can do no better than linear search.
I Inspect the actual values from left to right − 1 and if one

matches value return its index.
I Otherwise return some ‘not found’ indicator (usually -1).

Analysis:
I Let n = right − left be the size of the subarray.
I We do one operation in each position from left to right − 1

inclusive until we find the value.
I In the worst case (not found), this could be n, so the time

complexity is O(n).
I Finding items that are near the beginning of the list is

cheapest.
10

Linear search implementation

public static int search(int[] a, int value) {
return search(a, 0, a.length, value);

}

public static int search(int[] a, int left,
int right, int value) {

for(int i = left; i < right; i++) {
if (a[i] == value) return i;

}

return NOT_FOUND;
}

11

Binary search
Problem: Given a subarray a[left . . . right) whose values are
known to be in increasing order determine whether or not it
contains a particular value, val (and if so, return a single index
at which it occurs).
I We could modify linear search to return once we exceed

the target value (with ‘not found’) but can do much better.
I Check the midpoint – this either finds the value or gives us

a new range to search in which is only half the size.
I Implement recursively.

Analysis:
I Let n = right − left be the size of the subarray.
I In one comparison, we either find the value, or cut the

subarray size in 2.
I In the worst case (not found), we will require log2 n

“halvings” so the complexity is O(log n).
I There is no particular preferred range of locations.

12

Binary search implementation

public static int binarySearch(int[] a, int value) {
return binarySearch(a, 0, a.length, value);

}

public static int binarySearch(int[] a, int left,
int right, int value) {

if (right <= left) return NOT_FOUND;

int mid = (right + left)/2;

if (a[mid] == value) return mid;

if (a[mid] > value)
return binarySearch(a, left, mid, value);

return binarySearch(a, mid+1, right, value);

}

13

