Cosc 241
Programming and Problem Solving
Lecture 9 (23/3/2020)

Links, lists, and linked lists

Michael Albert
michael.albert@cs.otago.ac.nz

OTAGO
Keywords: linked list, iterators, %
anonymous classes



mailto:michael.albert@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Linked_list
https://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html
http://docstore.mik.ua/orelly/java-ent/jnut/ch03_12.htm

References as links

> A Java reference is just that — it refers to a memory
location in which the complete data for an object is stored.
» In other languages such references are sometimes called

pointers and a clear distinction is drawn between “objects”
and “references to objects” (cf. C, in COSC 242).

> A reference to an object of the same, or a closely related
type is often called a link.

» A collection of linked objects is called a linked data
structure.



Family Tree

public class Person{

private String name;
private Date dateOfBirth;

private Person father;
private Person mother;
private Person[] children;

» A complex linked and recursive data structure!

» Where does it start? How do we navigate it? How do we
maintain it?



Simple linked lists

» A linked list consists of a sequence of nodes connected by
links.

» Each node, except the last, has a successor.
» Each node, except the first, has a predecessor

» Each node contains a single element and links (i.e.,
references) to its successor and/or predecessor.

» The key difference with an array is that by manipulating the
links we can change the structure of the list — not just the
values it stores.

> A linked list is a dynamic data structure.



Dynamic vs. static

» A static data structure is one whose structure (i.e., its
disposition in the computer’s memory, or the organisation
of the data it contains) is fixed at the time it is created and
cannot be changed.

» For instance, arrays — we cannot change the structure of
an array, only its contents.

» A dynamic data structure is one whose structure can
change.

» For instance, linked lists — by changing the links we change
the actual structure of the list.

> Sometimes we use static structures (because they tend to
be more efficient) in the background of apparently dynamic
structures (for instance, using an array to model a stack).

» Generally this requires some finesse to cope with the clash
between the static and dynamic requirements (e.g., when
the stack grows beyond the capacity of its backing array).



Singly linked lists
» In a singly linked list each node stores only one link, to the

next element of the list
» The actual list object contains a reference to the first node
of the list (or a nul1 reference if the list is empty).

public class SinglyLinkedList<T> {
private SLLNode<T> first;
public SinglyLinkedList () {
this.first = null;
}

private class SLLNode<T> {
private T value;
private SLLNode<T> next;
private SLLNode (T value, SLLNode<T> next) {
this.value = value;
this.next = next;




How do we get started?

» Shortly, we will examine how to insert elements into an
existing singly linked list (including an empty one).

» First a toString method so that we can see what’s going
on.

» Now add a single node at the head of a singly linked list.

» And now at the end.



toString

public String toString() {
StringBuilder result = new StringBuilder ("<SLL>: ");
SLLNode node = this.first;
while (node != null) {
result.append (node.value);
result.append (" -—> ");
node = node.next;
}

return result.toString();

» Uses the idea of list traversal.

» Start at the first node.

» While the node is not null, do something.
» Set the node to the next node.

>

Later we will add an iterator that allows us to do this
generally.



Adding at either end

public wvoid add(T value) {
SLLNode<T> newNode = new SLLNode (value,

this.first = newNode;

this.first);

public wvoid addLast (T value) {

if (this.first == null) {
add (value); return;

SLLNode current = this.first;
while (current.next != null) current = current.next;

current .next = new SLLNode (value, null);

}

Firstis O(1), second O(n) where n s the size of the list.



Making addLast constant time

» How could we change the implementation so that add and
addLast both have O(1) performance?

» The problem with addLast as it stands is that we need to
traverse the list to find the last node.

» So what about adding a new data field which stores the
last node of the list? Call it, oh | don’t know, last.

public void addLast (T value) {

if (this.first == null) {
add (value) ;
this.last = this.first;
return;
}
this.last.next = new SLLNode (value, null);

this.last = this.last.next;




Accessing by index

» We can think of the items in a linked list as being indexed,
starting from 0 for the first node etc.

» In that case it makes sense to be able to get the value at a
specified index.

» Because it will be useful later, we include and use a
(private - why?) method for getting the node at a specific
index.

» Note that if the index is too small or large, we throw an
IndexOutOfBoundsException. As thisis a runtime
exception, it does not need to be caught, or re-thrown by
calling methods.



Accessing by index

public T get (int index) {
return getNode (index) .value;

private SLLNode<T> getNode (int index)
throws IndexOutOfBoundsException {

if (index < 0)
throw new IndexOutOfBoundsException ("Negative index");

SLLNode current = this.first;

while (current != null && index > 0) {
current = current.next; index—--;

}

if (current == null)

throw new IndexOutOfBoundsException ("Index too large");
return current;




Adding in the middle

» Insertion in the middle of a linked list is a little tricky.

» The next reference of the inserted item should be the
next reference of the preceding item.

» The next reference of the preceding item should be reset
to the inserted item.

» In our structure, adding at the beginning is a special case.

» Note that IndexOutOfBoundsException might occur
implicitly.



Adding in the middle

public void add(T wvalue) {
SLLNode<T> newNode = new SLLNode (value,

this.first = newNode;

this.first);

public void add(int index, T value) {

if (index == 0) {
this.add (value);
return;

}

SLLNode prev = this.getNode (index-1);

SLLNode newNode = new SLLNode (value,

prev.next = newNode;

prev.next);




lterable

» One of the useful features of many classes in the
Collections framework is that they can be the targets of
“foreach” statements, e.g.,
for(String s : ArrayDeque<String> titles)

» Any class can do this providing that it implements the
Iterable interface.

» This in turn requires an iterator () method which
returns an object.

» That implements the Tterator interface (but relax, it
stops there).



lterators

> lterators must support three methods:

hasNext () returns a boolean indicating if there’s

anything more to return,
next () returns an object from the iterator,
remove () removes the last item returned (frequently just
throws an UnsupportedOperation
exception).
» These are often defined anonymously, i.e., the code that
defines the behaviour of the iterator is given directly where
the iterator is constructed (not as a separate named type).

> lterators over dynamic data structures are generally
allowed, even expected, to behave unpredictably if the
structure is modified while the iterator is active.



An iterator for singly linked lists

public java.util.Iterator<T> iterator() {
return new Jjava.util.Iterator<T>() {
private SLLNode<T> current = first;

public boolean hasNext () {
return current != null;

public T next () {

T result = current.value;
current = current.next;
return result;

public void remove () {
throw new UnsupportedOperationException();

}i




Things to think about

v

Linked list code can be cryptic — pictures help.
» Searching

» Remember the difference between a == b and
a.equals (b) for reference types.
» What if the list contains nul1l elements?

» Converting to an array (pretty easy).
» Converting from an array (ditto).
Sorting.

v



