
Cosc 241
Programming and Problem Solving

Lecture 11 (1/4/19)
Random

Michael Albert
michael.albert@cs.otago.ac.nz

1

http://xkcd.com/221/

mailto:michael.albert@cs.otago.ac.nz
http://xkcd.com/221/

Why randomness?

I Game playing: dice rolls, shuffling cards, choosing lottery
winners.

I Game playing: unpredictable actions by AI agents.
I Simulation and testing.
I Security: disc wiping and digital document shredding.
I Cryptography and communication protocols including

https.
I Some quotes and some history.

2

https://www.youtube.com/watch?v=rOAfbb5D3Dw
https://www.youtube.com/watch?v=rOAfbb5D3Dw
https://en.wikipedia.org/wiki/Data_erasure
http://en.wikipedia.org/wiki/Secure_Sockets_Layer#TLS_handshake_in_detail
http://www.random.org/quotations
https://medium.freecodecamp.com/a-brief-history-of-random-numbers-9498737f5b6c#.1ezuq54bi

Random vs. pseudo-random

I “True” random numbers (bits, integers, . . .) are generated
by observation of some unpredictable physical process.

I This is generally a slow and relatively speaking
computationally expensive process which until recently
required special purpose hardware.

I “Pseudo-random” numbers are generated as a sequence
by a specific deterministic mathematical algorithm called a
pseudo-random number generator – they appear
unpredictable when observed, but if the initial seed is
known as well as the algorithm, then they can be predicted
with 100% accuracy.

I So “pseudo-random” means “very fast, but not actually
random at all”.

3

http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://en.wikipedia.org/wiki/Pseudorandomness
https://www.khanacademy.org/computing/computer-science/cryptography/crypt/v/random-vs-pseudorandom-number-generators

Randomness in Java

Java provides three ways to access (pseudo-)randomness:
I Math.random() which “Returns a double value with a

positive sign, greater than or equal to 0.0 and less than
1.0.”

I The java.util.Random class: “. . . used to generate a stream
of pseudorandom numbers. The class uses a 48-bit seed,
which is modified using a linear congruential formula.”

I The java.security.SecureRandom class: “. . . provides a
cryptographically strong random number generator (RNG).”

4

http://docs.oracle.com/javase/6/docs/api/java/lang/Math.html#random()
http://docs.oracle.com/javase/6/docs/api/java/util/Random.html
http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html
https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

Linear congruential formulas

I A classical type of pseudo-random number generator.
I The seed s is updated by a rule of the form

s ← (s × a + b) % c

where a, b and c are fixed in the algorithm.
I Either s or some part of it is returned as the next value.

5

In Java

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L « 48) - 1)

I Note the use of hexadecimal representation of long values
(0x means “read as hexidecimal” and the trailing L means
“long”).

I The c value is 248 and the modulus is implemented via a
bitwise manipulation (taking “and” with a string of 47 ones).

6

NextInt
If r is a Random object, then r.nextInt(n) is supposed to return a
pseudo-random integer between 0 and n-1. How?

public int nextInt(int n) {
if (n <= 0)
throw new IllegalArgumentException("n must be positive");

if ((n & -n) == n) // i.e., n is a power of 2
return (int)((n * (long)next(31)) >> 31);

int bits, val;
do {

bits = next(31);
val = bits % n;

} while (bits - val + (n-1) < 0);
return val;

}

The documentation states “The algorithm is slightly tricky”. It
repays consideration.

7

Picking a winner

Is easy:

private static final Random R = new Random();

public static <T> T winner(T[] entries) {
return entries[R.nextInt(entries.length)];

}

What if we want multiple winners? How to avoid duplicating
picks and/or testing for equality?
One method:

I pick a subset of the indices of the array of entries (this
represents the set of winners),

I shuffle that subset (now we have them in order),
I now create the array of winners using those indices to pick

from the entries.

8

Shuffling

I How can we shuffle an array of items?
I We want to make sure that every ordering is equally likely.
I Think of a simple physical model.

9

Shuffling code

public class Shuffler{

private static final Random R = new Random();

public void shuffle(int[] a) {
for(int i = a.length-1; i > 0; i--) {

swap(a, i, R.nextInt(i+1));
}

};

private void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;

}

}

10

We still have a problem

We would like a method that takes in an array entries of type
T and an int n and returns an ordered list of n different
winners from entries.

I It should not rearrange entries.
I It should not use more storage than necessary (i.e. about

an additional n items for the list of winners).
I It should not require tests for equality or duplicate rejection.

11

