Cosc 241
Programming and Problem Solving
Lecture 12 (4/4/2019)
Random 2

Michael Albert
michael.albert@cs.otago.ac.nz

OTAGO

Keywords: odramn %



mailto:michael.albert@cs.otago.ac.nz

Recap

» We can work with an instance R of java.util.Random.

» The main method we will use is R.nextInt (k) which
returns a uniformly distributed (pseudo-)random integer
greater than or equal to 0 and less than k (perfect as an
array index into an array of length k).



Shuffling an array

One method:

v

Exchange the last card with some earlier item or itself, then

exchange the second last card with some earlier card or
itself, then

exchange the third last item with some earlier item or itself,
then

v

v

public static void shuffle(Object[] cards) {
for(int i = cards.length-1; i > 0; i--) {
exchange (cards, i, R.nextInt (i+l));

}




Dealing a hand

» This time we don’t want to shuffle the whole array, but
return k randomly chosen elements from it.

» No duplication (i.e. we want k distinct elements).

» One possible method - shuffle the array, and then use the
first, or last, k (if we do this right, then we don’t need to
complete the shuffle - we can stop when the required
elements are in place).

» Or generate the indices needed somehow.
» Or work with a form of sampling.



Generating indices

» We have some chosen set of i < k indices, and need to
generate the next one.

» There are n — i candidates left, so we should use
R.nextInt (n-1).

» But now we need to convert that to an actual index by
incrementing by one each time one of our previously
chosen indices is less than or equal to it.

» To do this conveniently requires having the already chosen
(and adjusted) indices in sorted order.



Choosing cards

» Look at the cards one at a time

» Each card is added to the hand with a probability of n/r
where nis the number of cards still needed and r is the
number of cards remaining in the deck (if we add a card,
we update both n and r, if not we just update r).

» Stop when you have enough cards.

public static <T> T[] chooseHand (T[] deck, int handSize) {
T[] result = (T[]) new Object[handSize];
int stillNeeded = handSize; int handIndex = 0;
for (int deckIndex = 0; stillNeeded > 0; deckIndex++) {
int i = R.nextInt (deck.length - deckIndex);
if (i < stillNeeded) {
result [handIndex] = deck[deckIndex];
handIndex++; stillNeeded--;
}
}

return result;




Complexity analysis

» Let n be the deck size and k the hand size.

» If we generate indices the complexity will be O(k?) (one
loop to generate the initial index, and one loop to update it
and insert it in the sorted list of indices generated so far).

» chooseHand has a single loop whose control is less clear.

» But, we might need to look at every card of the deck (since
we might choose the last one) so its complexity is O(n).

» Apparently there’s a trade off!
» It sems like O(k) should be possible.
» That’s easy if we're allowed to shuffle the deck.



Slightly silly

» What if we are obligated to leave the deck in the same
order that it started?

» Disclaimer: | have never actually needed this trick.

» Get the hand we want by shuffling with the first k
exchanges only, and save it.

» Then undo the exchanges on the original deck by doing
them again in reverse order.

» That's O(k).



One more time

» Again we want to select k cards from a deck (short list k
applicants, choose k prize winners etc.)

» This time we don’t know how many cards there are.

» We receive cards one at a time and may choose to reject
them permanently or accept (possibly rejecting a card we
already hold).

» The process can stop at any time and at that point the
hand we hold must be randomly chosen from all the cards
we saw.

» Key idea — when card n arrives we know that we should
hold it with probability k/n (for n > k).
» We do that in the usual way (see if R.nextInt (n) < k)

and if we succeed we store it in the index returned in that
call to r.



Managing a raffle

» In a raffle we have a number of entrants who may all have
different numbers of tickets.

» How can we efficiently choose a winner?

» What are the efficiency concerns?



