
Cosc 241
Programming and Problem Solving

Lecture 14 (11/4/2019)
Building a stack

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: stack, amortized analysis,
exceptions

mailto:lechszym@cs.otago.ac.nz
https://docs.oracle.com/javase/7/docs/api/java/util/Stack.html
https://en.wikipedia.org/wiki/Amortized_analysis
https://docs.oracle.com/javase/tutorial/essential/exceptions/


Stack ADT

public interface Stack241<T> {

public void push (T element);
public T pop();
public T peek();
public boolean isEmpty();
public int size();

}

2



Array implementation

I Use an array to keep track of the stack contents.
I A variable size will track the size of the stack.
I Problems?

I Generic array creation is not possible (why not?)
I How do we cope if “too much” gets pushed onto the stack?

3



Performance analysis

I What are the time and space costs of each of the
operations?

I Space first – we allocate O(1) space initially (because of
the default capacity).

I Later, when we expand capacity we never have more than
twice as much available as needed, so that’s O(n) where n
is the maximum number of items we ever include in the
stack.

I Time for pop, peek, isEmpty are all clearly O(1).
I The push operation is also O(1), except when we need to

expand the stack – what then?

4



Amortized cost
I It seems unfair to associate the cost of the stack expansion

to the single item that caused it,
I To be completely accurate we do have to say that a push

operation can be O(n).
I But practically, we can think of the cost of expansion as

being spread over all the elements present when it
happened.

I Since there are n elements present, and the expansion is
O(n), that means that in an amortized sense the push
operation is still O(1).

I Essentially, we imagine borrowing a little bit of time every
time we do a push, and spending it all when the expansion
is needed.

I Operationally though, we may observe occasional slow
downs if using very large stacks.

5

https://en.wikipedia.org/wiki/Amortized_analysis


Exceptions etc.

I The peek and pop operations need to do something on
empty stacks.

I One “solution” is to have them return null in these cases
– in some contexts that’s actually not bad.

I More in keeping with the spirit of the ADT is that such
operations should generate exceptions, and the user
should be responsible for throwing same, or enclosing in a
try-catch block.

I General principle – each ADT tends to come with its own
subclasses of Exception to describe the exceptions that
it might generate.

6


