
Cosc 241
Programming and Problem Solving

Lecture 15 (15/4/2019)
Queues

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: queue

mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Queue_(abstract_data_type)


Queue ADT

◮ A queue is an abstract data type that represents item
processing in a first in, first out manner.

◮ Basic operations just like for a stack, except that the
“remove” and “add” methods (pop and push for stacks)
operate on opposite ends of the data, rather than the same
end.

◮ A useful abstraction for:
◮ breadth first search,
◮ event or order processing,
◮ process scheduling,
◮ simulation.

◮ The priority queue (later!) is a common extension

2



Queue ADT

public interface Queue241<T> {

public void add(T element);
public T remove();
public T peek();
public int size();
public boolean isEmpty();

}

3



Singly linked list as queue

◮ A singly linked list seems an obvious match for
representing the queue ADT in a data structure.

◮ Adding a reference to the last element makes sure that
both the add and remove operations can be O(1).

◮ Let’s take the SinglyLinkedList from L10 and convert
it into an implementation of Queue.

4



Add and remove
public class SLLQ<T> implements Queue241<T>{

private SLLNode<T> first; // The next item to be removed
private SLLNode<T> last; // The last item added
/* ... */

public void add(T element) {
SLLNode newNode = new SLLNode(element, null);
if (this.first == null) {

this.first = newNode;
this.last = newNode;

} else {
this.last.next = newNode;
this.last = newNode;

}
}

public T remove() throws EmptyQueueException {
if (this.first == null) throw new EmptyQueueException("remove");
T element = this.first.value;
this.first = this.first.next;
return element;

}

/* ... */
}

5



Alternative queue representation

◮ It has to be asked: can we use an array to represent a
queue?

◮ This would be sensible if we “knew” that our queues would
never grow beyond a fixed size.

◮ One approach is to remove by returning the element at
position 0 and moving everything else down one space.

◮ But that makes remove O(n).
◮ Can we arrange for both add and remove to be O(1)?

6



The circular array

◮ If we think of the array elements as being arranged on a
circle, then we need only keep track of ‘first’ and ‘last’
indices.

◮ Adding involves storing at the last index and incrementing
it.

◮ Removing involves returning the element at the first index,
and incrementing it.

◮ We need to remember to wrap around at the end.

7



Add and remove

public class CircularQ<T> implements Queue241<T>{
private T[] values;
private int first, last, size;
/* ... */

public void add(T element) {
values[last] = element;
last++; size++;
if (last >= values.length) last = 0;

}

public T remove() throws EmptyQueueException {
if (size == 0) throw new EmptyQueueException("remove");
size--;
T value = values[first];
first++;
if (first >= values.length) first = 0;
return value;

}

/* ... */
}

8



What if?

We forget to enlarge the array storing a circular queue (because
it is too much trouble) when the capacity is exceeded?

◮ Basically, we mess up completely
◮ How can we recover?
◮ Two possibilities:

◮ Impose a hard limit on the size of such a queue and throw
an exception when we overrun (probably also want to add a
constructor that sets the size to something other than the
default).

◮ Bite the bullet and write the enlarge method.

9


