
Cosc 241
Programming and Problem Solving

Lecture 16 (18/4/2019)
Insertion and Selection Sort

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: sorting, selection sort,
insertion sort

mailto:lechszym@cs.otago.ac.nz


Background

An entire volume of Knuth’s The Art of Computer Programming
is devoted to sorting and searching. Why?
◮ ‘Sorting algorithms are prevalent in introductory computer

science classes, where the abundance of algorithms for
the problem provides a gentle introduction to a variety of
core algorithm concepts, such as big O notation, divide
and conquer algorithms, data structures, randomized
algorithms, best, worst and average case analysis,
time-space tradeoffs, and lower bounds.’ (wikipedia)

◮ ‘. . . over 25 percent of the running time . . . spent on sorting,
. . . many installations in which sorting uses more than half
of the computing time.’ (Knuth)

◮ Most day to day sorting problems are ‘solved’ but there are
still interesting variations both theoretically and practically,
particularly for search purposes.

2

https://en.wikipedia.org/wiki/Sorting_algorithm


Why all the algorithms?

◮ The number of available sorting algorithms is enormous.
Why?

◮ Simplicity v speed. Simple can beat ‘asymptotically fast’ on
small amounts of data.

◮ Memory use – how much extra storage is needed beyond
that used for the actual data?

◮ Adaptability – does the algorithm improve with partially
presorted or otherwise structured data?

◮ Worst case as opposed to average case behaviour and
knowing when it matters!

3



Sorter interface

public interface IntSorter {

public void sort(int[] a);

/* ... */
}

4



Selection sort

Find the smallest item in the list. Swap it with the first item. Find
the smallest item in the remainder of the list, swap it with the
first item of the remainder. Repeat until finished.

We can think of this as a recursive algorithm using subarrays.
The needed ingredients are just a method that returns the
position of the minimum element of a subarray, and a method
that swaps elements in two positions.

5

https://en.wikipedia.org/wiki/Selection_sort


Swap

You know how to do this!

public class ArrayManipulation {
/* ... */

public static void swap(int[] a, int i, int j) {
int t = a[i];
a[i] = a[j];
a[j] = t;

}

/* ... */
}

6



Selection sort

public class SelectionSort implements IntSorter {
/* ... */

public void sort(int[] a) {
sort(a, 0, a.length);

}

private void sort(int[] a, int left, int right) {
if (left >= right) {
return;

}
ArrayManipulation.swap(a, left, minPosition(a, left, right));
sort(a, left + 1, right);

}

/* ... */
}

7



Minimum position

public class SelectionSort implements IntSorter {
/* ... */

private int minPosition(int[] a, int left, int right) {
int pos = left;
int minValue = a[left];
for (int i = left + 1; i < right; i++) {
if (a[i] < minValue) {
pos = i;
minValue = a[i];

}
}
return pos;

}

/* ... */
}

8



Selection sort analysis

◮ Extra space required: O(1) (for the location of the
minimum and the swap).

◮ We always examine the whole remaining list to find the
minimum position, so do n − 1 comparisons in the first
pass, n − 2 in the second etc.

◮ So time required is always O(n2) (there is no real worst
case/best case since we always examine the whole
remaining list).

9



Truth in advertising

The recursive code for selection sort chokes on arrays of any
decent size (because the call stack capacity is limited). The
recursion is easy to eliminate in this case:

public class SelectionSort implements IntSorter {
/* ... */

public void sort(int[] a, int left, int right) {
while (left < right) {
swap(a, left, minPosition(a, left, right));
left++;

}
}

/* ... */
}

10



Insertion sort

Process the array one element at a time. Insert each new
element into its correct position among the previously
processed elements.

Observation suggests that this is the method most people use
when sorting a small stack of exam papers (a minority prefer
selection sort).

11

https://en.wikipedia.org/wiki/Insertion_sort


Naive insertion sort
public class NaiveInsertionSort implements IntSorter {
/* ... */

public void sort(int[] a) {
for (int right = 1; right < a.length; right++) {
int pos = findPosition(a, right);
ArrayManipulation.insert(a, pos, right + 1, a[right]);

}
}

private int findPosition(int[] a, int right) {
int pos = 0;
while (pos < right && a[pos] < a[right]) {
pos++;

}
return pos;

}

/* ... */
}

12



Insert

public class ArrayManipulation {
/* ... */

public static void insert(int[] a, int index,
int right, int value) {

for (int dest = right - 1; dest > index; dest--) {
a[dest] = a[dest - 1];

}
a[index] = value;

}

/* ... */
}

13



Insertion sort analysis

◮ Extra space required: O(1) – for the insertion position and
the insertion itself.

◮ We always search up to the position we insert at, and then
insert from there until the end of the current subarray.

◮ So time required is always O(n2) (there is no real worst
case/best case).

◮ We can do better by combining the find position and insert
steps.

14



Better insertion sort

◮ When the time comes to insert the element from position i
the previous elements are sorted and those greater than
a[i] need to be moved forward.

◮ So, read backwards from position i, moving elements
forward until the necessary hole is created into which we
can place the value a[i] (which we need to store in
advance since it will be written over in the first step).

◮ Notice this works really well if a is nearly sorted – most
items will move only a short distance (or not at all) and
performance will be more like O(n) than O(n2).

15



Better insertion sort
public class InsertionSort implements IntSorter {
/* ... */

public void sort(int[] a) {
for (int i = 0; i < a.length; i++) {
findAndInsert(a, i, a[i]);

}
}

private void findAndInsert(int[] a, int index, int value) {
index--;
while (index >= 0 && a[index] > value) {
a[index + 1] = a[index];
index--;

}
a[index + 1] = value;

}

/* ... */
}

16



Experiments

◮ The main reason to use an interface was to allow us to
plug in various classes that implement IntSorter into a
test harness.

◮ That allows us to check that they are correct, and also to
compare their speeds.

◮ We can also write a wrapper around Arrays.sort in
order to compare with the system provided sort routines.

◮ Obviously there is room for improvement.

17


