
Cosc 241
Programming and Problem Solving

Lecture 17 (29/4/2019)
Quicksort

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: sorting, quicksort

mailto:lechszym@cs.otago.ac.nz


The limits of sorting performance
◮ Algorithms which sort based only on the results of

comparisons between their data are called comparison
sorts.

◮ Since each comparison can have only three different
outcomes (less than, equal, greater than) a set of k
comparisons can have at most 3k outcomes (in fact if the
data are all distinct, this decreases to 2k ).

◮ If we have n distinct data items they might be in any one of
n! orders. Any two different orders require different
rearrangements of the data to sort them.

◮ So, unless n! ≤ 2k we cannot hope to sort every possible
ordering of n distinct data items with k comparisons.

◮ This leads to the conclusion that a constant multiple of
n log n comparisons are necessary to guarantee the ability
to sort n items.

◮ Are they sufficient?
2

https://en.wikipedia.org/wiki/Comparison_sort


Sorting performance

◮ Both selection sort and insertion sort require a constant
multiple of n2 comparisons in the worst case, so they don’t
achieve the theoretical lower bound.

◮ We will consider three more sorting algorithms: quicksort,
mergesort and (eventually) heapsort.

◮ The latter two provide O(n log n) worst case performance.
◮ The first does not - it degrades to O(n2) performance for

some orderings of the data items. However, it has both
historical and practical significance.

◮ Practically if we know the data is likely to be “random” then
the average case performance is O(n log n).

◮ (A minor variation of) quicksort forms the core of the Java
system sort - so it’s useful to know about.

3

https://en.wikipedia.org/wiki/Quicksort
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Heapsort
https://www.geeksforgeeks.org/dual-pivot-quicksort/


Quicksort

◮ Quicksort is ancient in computing terms - it was developed
in 1959 (published 1961) by Tony Hoare.

◮ The fundamental idea is very simple:
◮ Choose one of your data items called the pivot.
◮ Split the remaining data into the items smaller than the

pivot and the items larger than (or equal to) the pivot.
◮ Put all the small items before the pivot and all the large

items after the pivot.
◮ Sort those two groups individually (using quicksort of

course).
◮ But, there are some nice clever tricks for doing this in an

array without using any significant amount of extra storage.

4



Pseudocode for quicksort

We want to sort a subarray of an array A from positions lo to hi .
We make use of an auxiliary algorithm called partition which
modifies the subarray and returns an index p such that:
◮ all elements of the (modified) subarray before p are less

than A[p], and
◮ all elements after p are greater than or equal to A[p].

quicksort(A, lo, hi):
if hi − lo ≤ 1 then

return (the subarray is empty or a singleton)
end if
p ← partition(A, lo, hi)
quicksort(A, lo, p) (exclusive of p)
quicksort(A, p + 1, hi)

5



Building quicksort

◮ If you look at the wikipedia page on Quicksort you will see
that there are several common partition schemes as well
as alternative schemes for selecting the pivot:

The pivot selection and partitioning steps can be done
in several different ways; the choice of specific imple-
mentation schemes greatly affects the algorithm’s per-
formance.

◮ But that is engineering not theory! We’ll stick with a simple
choice in both instances that works well enough.

◮ Note too that some choices require slight changes to the
pseudocode though the underlying idea is the same.

6

https://en.wikipedia.org/wiki/Quicksort


Our choices
◮ The pivot will be the first element of the subarray being

sorted (i.e., the element in position lo).
◮ We remove this element and store its value - this creates a

“hole” at position lo.
◮ Starting at the other end (hi − 1) we scan from right to left

until we find an element smaller than the pivot. We
exchange that element and the “hole”. Now the elements
to the right of the hole belong above the pivot.

◮ The element we just swapped belongs to the left of the
pivot. So we start just to the right of it scanning to the right
and looking for elements at least as big as the pivot. When
we find one, we exchange it with the “hole” and return to
right to left scanning.

◮ When either boundary reaches the hole, we put the pivot
element in at the final position of the hole and return that
value.

7



Partitioning code

private int partition(int[] a, int lo, int hi) {
int pivot = a[lo];
int hole = lo;
int left = lo+1;
int right = hi-1;
while (true){
while (right > hole && a[right] >= pivot) right--;
if (right == hole) break;
a[hole] = a[right];
hole = right;
while (left < hole && a[left] < pivot) left++;
if (left == hole) break;
a[hole] = a[left];
hole = left;

}
a[hole] = pivot;
return hole;

}

8



Sorting code

public void sort(int[] a) {
quicksort(a, 0, a.length);

};

private void quicksort(int[] a, int lo, int hi) {
if (hi - lo <= 1) return;
int p = partition(a, lo, hi);
quicksort(a, lo, p);
quicksort(a, p+1, hi);

}

9



Complexity and remarks

◮ Formally the best we can say for quicksort is that it’s
O(n2) because if the original data is already in sorted
order we:
◮ First check that everything is correctly placed relative to the

pivot
◮ Recursively sort two subarrays of size 0 and n − 1

respectively.
◮ The first part is O(n) so we wind up with something like

n + (n − 1) + (n − 2) + · · · which is O(n2).
◮ On random data though quicksort generally behaves

much much better than that in fact with O(n log n)
behaviour.

◮ We’ll explore this more thoroughly next time in the context
of discussing divide and conquer algorithms.

10

https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm

