
Cosc 241
Programming and Problem Solving

Lecture 19 (6/5/2019)
Divide and conquer algorithms

Mergesort

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: divide and conquer,
mergesort

mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Merge_sort

What is ‘divide and conquer’?

I A divide and conquer algorithm working on a problem of
size parameter n works as follows:

(Pre) Break the problem apart into two or more
smaller problems whose size parameters add
up to at most n,

(Rec) Solve those problems recursively,
(Post) Combine those solutions into a solution of the

original problem.
I E.g., for quicksort

(Pre) Select the pivot and partition the array “before
the pivot” and “after the pivot” (total size
n − 1),

(Rec) Sort the parts before and after the pivot,
(Post) Not required.

2

Mergesort

I Mergesort is another divide and conquer algorithm for
sorting arrays.

(Pre) Split the array into two pieces of nearly equal
size,

(Rec) Sort the pieces,
(Post) Merge the results together.

I To merge two sorted arrays is easy: look at the smallest
element of each. Take the smaller one and put it in the
result, now look at the smallest remaining elements . . .

I Mergesort is the preferred method for sorting large
stacks of exam papers (dropping back to insertion sort
when the stack size is manageable).

3

When does divide and conquer work well?

I Short answer - when all the subproblems are of size at
most cn for some constant c < 1, and the total time
needed in (Pre) and (Post) is O(n).

I In that case we get O(n log n) performance.
I Strictly speaking that’s a bit more than what’s needed but

it’s the practical version.
I “The subproblems should be a constant fraction smaller

than the main problem and the work required to create and
combine them should be linear”.

I Mergesort clearly meets this requirement (basically
c = 1/2 or a tiny bit more works).

I Quicksort sometimes fails - if the data is already sorted
the subproblems are of size 0 and n − 1 (and we saw this
was a problem case.)

4

The layer cake in the good case

I Think of the different calls we wind up making to the
algorithm as being arranged in layers.

Layer 0 The main call.
Layer 1 All the calls made in (Rec) from Layer 0.
Layer 2 All the calls made in (Rec) from Layer 1.

.
I The total size of all the calls in a single layer is at most n.

Therefore the total amount of (Pre) and (Post) work done in
a single layer is O(n).

I The total number of layers is O(log n) since the maximum
possible size of a problem in Layer k is ckn and c < 1.
When k > − log n/ log c this is less than 1 and there is no
Layer k + 1.

I Total work done is (work per layer) times (number of layers)
and is O(n log n).

5

Mergesort sort code

public void sort(int[] a) {
sort(a, 0, a.length);

}

private void sort(int[] a, int left, int right) {
if (right - left <= 1) return;
int mid = (left + right)/2;
sort(a, left, mid);
sort(a, mid, right);
merge(a, left, mid, right);

}

6

Mergesort merge code

private void merge(int[] a, int left,
int mid, int right) {

int[] temp = new int[right-left];
int leftPos = left; int rightPos = mid; int i = 0;
while (leftPos < mid && rightPos < right) {

if (a[leftPos] < a[rightPos]) {
temp[i++] = a[leftPos++];

} else {
temp[i++] = a[rightPos++];

}
}
while (leftPos < mid) {

temp[i++] = a[leftPos++];
}
while (rightPos < right) {

temp[i++] = a[rightPos++];
}
System.arraycopy(temp, 0, a, left, right-left);

}

7

Room for improvement

I There are several places where we could tinker with
Mergesort to speed it up in practice.

I The most obvious is delegating to insertion sort when
right - left is less than some pre-set threshold.

I Also we could maintain a single static array temp and
reuse it in the various calls to merge – this saves some
time in object creation and garbage collection.

I We’ll explore some of these ideas and compare our
various sorting methods in Lecture 22 .

8

