Cosc 241
Programming and Problem Solving
Lecture 19 (6/5/2019)
Divide and conquer algorithms
Mergesort

Lech Szymanski
lechszym@cs.otago.ac.nz

OTAGO

Keywords: divide and conquer, %
mergesort



mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Divide_and_conquer_algorithm
https://en.wikipedia.org/wiki/Merge_sort

What is ‘divide and conquer’?

» A divide and conquer algorithm working on a problem of
size parameter n works as follows:

(Pre) Break the problem apart into two or more
smaller problems whose size parameters add
up to at most n,
(Rec) Solve those problems recursively,
(Post) Combine those solutions into a solution of the
original problem.
» E.g., for quicksort
(Pre) Select the pivot and partition the array “before
the pivot” and “after the pivot” (total size
n—1),
(Rec) Sort the parts before and after the pivot,
(Post) Not required.



Mergesort

» Mergesort is another divide and conquer algorithm for
sorting arrays.
(Pre) Split the array into two pieces of nearly equal
size,
(Rec) Sort the pieces,
(Post) Merge the results together.

» To merge two sorted arrays is easy: look at the smallest
element of each. Take the smaller one and put it in the
result, now look at the smallest remaining elements . ..

» Mergesort is the preferred method for sorting large
stacks of exam papers (dropping back to insertion sort
when the stack size is manageable).



When does divide and conquer work well?

>

Short answer - when all the subproblems are of size at
most cn for some constant ¢ < 1, and the total time
needed in (Pre) and (Post) is O(n).

In that case we get O(nlog n) performance.

Strictly speaking that’s a bit more than what’s needed but
it's the practical version.

“The subproblems should be a constant fraction smaller
than the main problem and the work required to create and
combine them should be linear”.

Mergesort clearly meets this requirement (basically
¢ = 1/2 or a tiny bit more works).

Quicksort sometimes fails - if the data is already sorted
the subproblems are of size 0 and n — 1 (and we saw this
was a problem case.)



The layer cake in the good case

» Think of the different calls we wind up making to the
algorithm as being arranged in layers.

Layer 0 The main call.
Layer 1 All the calls made in (Rec) from Layer 0.
Layer 2 All the calls made in (Rec) from Layer 1.

» The total size of all the calls in a single layer is at most n.
Therefore the total amount of (Pre) and (Post) work done in
a single layer is O(n).

» The total number of layers is O(log n) since the maximum
possible size of a problem in Layer k is cknand ¢ < 1.
When k > —log n/ log c this is less than 1 and there is no
Layer k + 1.

» Total work done is (work per layer) times (number of layers)
and is O(nlog n).



Mergesort sort code

public void sort (int[] a) {
sort(a, 0, a.length);

private void sort (int[] a, int left, int right)
if (right - left <= 1) return;
int mid = (left + right)/2;
sort (a, left, mid);
sort (a, mid, right);
merge (a, left, mid, right);




Mergesort merge code

private void merge(int[] a, int left,
int mid, int right) {
int[] temp = new int[right-left];
int leftPos = left; int rightPos = mid; int i = 0;
while (leftPos < mid && rightPos < right) {
if (a[leftPos] < al[rightPos]) {

temp[i++] = a[leftPos++];
} else {
temp[i++] = al[rightPos++];

}
while (leftPos < mid) {
temp[i++] = al[leftPos++];
}
while (rightPos < right) {
temp[i++] = a[rightPos++];
}
System.arraycopy (temp, 0, a, left, right-left);




Room for improvement

» There are several places where we could tinker with
Mergesort to speed it up in practice.

» The most obvious is delegating to insertion sort when
right - left isless than some pre-set threshold.

» Also we could maintain a single static array temp and
reuse it in the various calls to merge — this saves some
time in object creation and garbage collection.

» We'll explore some of these ideas and compare our
various sorting methods in Lecture 22 .



