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Prelude: trees

I A tree is a certain type of linked data structure.
I A tree consists of nodes and each node may contain links

to a set of children.
I There is exactly one node that is not the child of any other

node and it is called the root.
I There are no cycles (that is, a node cannot be the child of

more than one parent).
I Generally each node stores data of some kind.
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1K words

The red node is the root, values stored at the nodes are shown,
and a node’s children are the ones immediately below it
connected to it by an edge.
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Heaps

I A heap is a tree where the values stored are comparable
which satisfies certain additional restrictions.

I The value stored at a node is always greater than or equal
to the value stored at any of its children.

I Each node has at most two children.
I In fact, in a given level either:

I Every node has two children, or
I From left to right we see a sequence of nodes with two

children, then possibly one node with one child, then nodes
with no children, and no nodes in the next level have
children.
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Heap operations

The fundamental operations that a heap should support are:
I Adding an item,
I Returning the maximum value in the heap,
I Removing the maximum value from the heap.

These correspond to
I (push, peek, pop) for stacks, and
I (add, peek, remove) for queues.
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Usefulness

There are two main uses for heaps:

I In priority queues a data structure in which the item with
highest priority is always the next one to be processed.

I As part of the heap sort algorithm, which sorts data by
adding it item by item to a heap and then simply removing
from the heap until nothing is left.
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Heap algorithms

Adding an item:
I Place the item to be added in the first vacant leaf position.
I Let it float up the branch towards the root so long as it is

larger than its parent.
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Returning/Removing the maximum

I The maximum is always the root of the tree, so finding and
returning it is not an issue.

I The issue is, if we want to remove it, how to reconstruct the
tree, maintaining the heap property after the root element
is removed.

I The key idea is in some sense the reverse of addition.
I Replace the root value with the value of the last leaf

(removing the last leaf).
I Then, to re-establish the heap property exchange the root

and the larger of its children (and do this recursively
downwards).
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Heap ADT

public interface Heap<T extends Comparable<T>> {

public void add(T element);
public T get();
public T remove();

}
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Heap implementations
What data structure shall we use to represent a heap?
I A linked binary tree is certainly possible.

I To facilitate both upwards and downwards navigation, we
would probably want to maintain links to parent nodes as
well as to children.

I To determine where the next item is to be added and where
the last item is (for removal) we probably want to have a
data field for the last item.

I How about an array?
I We can store the root at position 0 and its (potential)

children at indices 1 and 2.
I The children of node 1 go in indices 3 and 4, and those of

node 2 in indices 5 and 6.
I In general, the children of node i go at indices 2i + 1 and

2i + 2.
I If we keep track of the current size, then the position of the

last item (and the next insertion point) is also known.
I The only drawback is the need to resize if the heap gets too

large.
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Arrays it is

What extra internals will we need? (But we should really
discover these as we go)
I A method to expand the capacity if/when needed.
I A method to swap the values at two positions.
I A method to find the index of the larger child (or tell us

there isn’t one).
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Fields, constructors

public class ArrayHeap<T extends Comparable<T>>
implements Heap<T>{

private static final int DEFAULT_CAPACITY = 31;
private static final int NO_LARGER_CHILD = -1;

private T[] heap;
private int size = 0;

public ArrayHeap() {
this(DEFAULT_CAPACITY);

}

public ArrayHeap(int capacity){
heap = (T[]) new Comparable[capacity];

}

...
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Get, expand, swap

public T get() {
return heap[0];

}

private void expandCapacity() {
heap = Arrays.copyOf(heap, 2*heap.length+1);

}

private void swap(int i, int j) {
T temp = heap[i];
heap[i] = heap[j];
heap[j] = temp;

}
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Add

public void add(T element) {
if (size == heap.length) expandCapacity();
heap[size] = element;
size++;
int childIndex = size-1;
int parentIndex = (childIndex-1)/2;
while (parentIndex >= 0 &&

heap[parentIndex].compareTo(heap[childIndex]) < 0) {
swap(childIndex, parentIndex);
childIndex = parentIndex;
parentIndex = (childIndex-1)/2;

}
}
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Larger child

private int getLargerChildIndex(int i) {
int l = 2*i+1;
int r = 2*i+2;
if (r >= size || heap[r].compareTo(heap[l]) < 0) {

if (l < size && heap[i].compareTo(heap[l]) < 0) {
return l;

}
} else { // Right child exists and is larger than left

if (heap[i].compareTo(heap[r]) < 0) {
return r;

}
}
return NO_LARGER_CHILD;

}
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Remove

public T remove() {

T result = heap[0];
heap[0] = heap[size-1];
size--;
int parentIndex = 0;
do{

int largerChildIndex = getLargerChildIndex(parentIndex);
if (largerChildIndex == NO_LARGER_CHILD) break;
swap(parentIndex, largerChildIndex);
parentIndex = largerChildIndex;

} while (true);
return result;

}
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