
Cosc 241
Programming and Problem Solving

Lecture 21 (13/5/2019)
Priority queues and HeapSort

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: priority queue, HeapSort

mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Priority_queue
https://en.wikipedia.org/wiki/Heapsort


Priority Queues

◮ In a priority queue each element is added with an
associated priority.

◮ When an element is removed, it is the element with highest
priority.

◮ If more than one element shares highest priority then the
earliest arrival should be removed.

◮ So, if all elements have the same priority then it behaves
as a queue, while if the elements are added in strictly
increasing order of priority, then it behaves like a stack.

2



Priority Queue implementation

◮ A heap is the ideal backing structure for a priority queue,
◮ We just need to do a bit of bundling together of items with

priorities, and then just use the basic heap operations.
◮ We suppose that priorities are supplied as integers.

3



Priority queue

public class PriorityQueue<T>{

private ArrayHeap<QueueNode<T>> heap;
private static int arrivalNumber = 0;

public PriorityQueue() {
heap = new ArrayHeap<QueueNode<T>>();

}

public void add(T item, int priority) {
heap.add(new QueueNode<T>(item, priority));

}

public T removeNext() {
return heap.remove().value;

}

private class ...
}

4



Priority queue node
private class QueueNode<T> implements Comparable<QueueNode<T>>{

private T value;
private int priority;
private int arrival;

private QueueNode(T value, int priority) {
this.value = value;
this.priority = priority;
this.arrival = arrivalNumber;
arrivalNumber++;

}

public int compareTo(QueueNode<T> other) {
if (this.priority < other.priority) return -1;
if (this.priority > other.priority) return 1;
return other.arrival - this.arrival;

}

}

5



HeapSort

◮ HeapSort (1964) is an in place, comparison based, array
sorting algorithm which has guaranteed worst case
O(n log n) behaviour.

◮ The basic idea:
◮ Organize the elements of the array into a heap structure.
◮ Exchange the first (largest) element, and the last element.
◮ Restore the heap structure (except for the final element).
◮ Repeat last two steps until finished.

6



Organizing the heap

◮ There are two choices top down or bottom up.
◮ The first mimics our algorithms from the previous lecture,

effectively treating a growing initial segment of the array as
a heap and adding one element at a time, letting it float as
high as necessary.

◮ The second imagines the tree structure already in place
over the whole array, and fixes violations of the heap
property beginning from the lowest non-leaf nodes and
moving upwards.

◮ The first is easier conceptually but O(n log n).
◮ The second is actually O(n).

7



Why are they different?

◮ In the top down version, where elements float up the heap,
the elements from the larger parts of the heap float
farthest.

◮ In particular each element of the bottom level (size n/2)
might need to float to the top (log n away), requiring
O(n log n) steps.

◮ In the bottom up version, the elements in the larger levels
are sinking down, and have a shorter distance to travel.

◮ In fact, at most n/2i elements need to sink a distance i .
◮ So the total number of steps required is

O

󰀣 ∞󰁛

i=1

i
n
2i

󰀤
= O(n)

◮ That’s why!

8



Doing the sort

public static <T extends Comparable<T>> void sort(T[] a) {

heapify(a);
for(int i = a.length-1; i > 0; i--) {

swap(a, 0, i);
siftDown(a, 0, i);

}

}

9



Heapifying (bottom up)

private static <T extends Comparable<T>> void
heapify(T[] a) {

for(int i = (a.length-1)/2; i >= 0; i--) {
siftDown(a, i, a.length);

}
}

10



Sifting down

private static <T extends Comparable<T>> void
siftDown(T[] a, int s, int high) {

while(true) {
int largerChildIndex = getLargerChildIndex(a,s,high);
if (largerChildIndex == NO_LARGER_CHILD) {
break;

}
swap(a, s, largerChildIndex);
s = largerChildIndex;

}
}

11


