Cosc 241
Programming and Problem Solving
Lecture 22 (16/5/2019)
Sorting comparisons

Lech Szymanski
lechszym@cs.otago.ac.nz

o Keywords: sorting algorithms, sorting

in Java



mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Sorting_algorithm
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(int%5B%5D)

Sorting algorithms

» We've looked at five different sorting algorithms for arrays:
selection sort, insertion sort, quicksort, mergesort and
heapsort.

» The first two are quadratic, i.e., can only offer O(n?)
performance guarantees, with insertion sort being clearly
preferred.

» The last two offer O(nlog n) performance guarantees -
mergesort requires an additional O(n) storage whereas
heapsort can be carried out in place.

> Quicksort offers worst case O(n?) guarantees, but in a

well-defined way offers “average” performance (i.e., on
randomly ordered data) that’s O(nlog n).



Sorting in Java

According to the javadoc for java.util.Arrays:

» The sorting algorithm used for arrays of primitive type “is a
Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley,
and Joshua Bloch. This algorithm offers O(nlog n)
performance on many data sets that cause other
quicksorts to degrade to quadratic performance, and is
typically faster than traditional (one-pivot) Quicksort
implementations.”

» For arrays of reference type: “This implementation is a
stable, adaptive, iterative mergesort that requires far fewer
than nlg n comparisons when the input array is partially
sorted ...”


https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

What'’s left?

There are dozens of interesting investigations one could carry
out with respect to how sorting works and how it might be
improved. We have time for only a few which I've mentioned
before:

» How can we remove the recursion in quicksort which is
occasionally problematic due to its depth?

» In a hybrid sorting algorithm some complex sort is used on
large (sub-)arrays, which then delegates to a simpler sort
(usually insertion sort) on smaller sub-arrays. What’s the
right dividing line between large and small?



Removing recursion

» When a method call is made, the complete state of the
current method must be stored (since it might all be
needed) and then restored when the called method exits.

» This is the main reason why there’s a limitation to the
depth of recursion that’s allowed.

» Sometimes we know just how much state is required (and
often, no local state is actually needed) so this is wasteful
and we can eliminate recursion by explicit representation
of the call stack, storing only information (typically the
parameters of what would have been the recursive call)
that’s needed.



In quicksort

» Since we actually want to manipulate the same array
throughout we really just need to keep track of the
sub-array bounds that are needed in the recursive calls.

> So the stack just keeps track of the sub-arrays that still
need sorting and when we exhaust it we're done.



Randomised algorithms

» In a randomised algorithm, the algorithm makes use of
random choices in its decisions — the reason is usually to
guarantee (as much as possible) some sort of average
case behaviour.

» We could randomise quicksort by first shuffling the input
array — then only if the shuffle accidentally produced a
nearly-sorted (or reverse-sorted) array would we observe
the slowdown entailed by that.

» Perhaps simpler is to choose a random element of any
sub-array that we're partitioning as the pivot (instead of just
the first one).


https://en.wikipedia.org/wiki/Randomized_algorithm

Delegating sorting

| 4

>

“One size fits all” is rarely, if ever, true — equally in
algorithms as in real life.

A frequent dividing line is that more complex algorithms
that work well with large data sets may have significant
overheads.

On small data sets a simpler algorithm (that does not scale
well) may be better.

Only in trying to squeeze out the last drop of performance
(as in the system sorts provided in a language’s libraries)
would we generally worry about these issues.

Let’s see whether delegating from quicksort to insertion
sort can be effective.



Knuth on optimization

In his 1974 Turing award lecture, Knuth said:
“premature optimization is the root of all evil”.
But this is often taken out of context.

“Programmers waste enormous amounts of time thinking
about, or worrying about, the speed of noncritical parts of their
programs, and these attempts at efficiency actually have a
strong negative impact when debugging and maintenance are
considered. We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities in that critical
3%.” (emphasis mine)


https://amturing.acm.org/award_winners/knuth_1013846.cfm

Being Goldilocks

» Never worrying about the efficiency of code is bad practice
- you may well be able to write code that is correct and
passes all simple tests, but then fails badly because it does
not scale well to the problems it is actually supposed to be
dealing with.

» Trying to optimize every bit of your code is bad practice. It's
time-inefficient (yours), creates large numbers of
opportunities for bugs, and makes maintenance difficult.

> You need to find that “just right” spot where: code that
doesn’t need to be optimised because it’s rarely used or
needs to deal with only small cases is as simple and
straight forward as possible, and code that does need to be
optimised is well-tested and encapsulated so that if it
creates a problem you know where to look!



