
Cosc 241
Programming and Problem Solving

Lecture 23 & 24 (20/5/2019 & 23/5/2019)
Object oriented programming I & II

Lech Szymanski
lechszym@cs.otago.ac.nz

1

Keywords: abstraction,
encapsulation, visibility, inheritance,
polymorphism

mailto:lechszym@cs.otago.ac.nz
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)


Procedural vs. OOP

Procedural programming:
I functions act on data;
I a program organises function calls to manipulate data.

Object oriented programming:
I objects contain encapsulated data and associated

methods;
I a program describes how objects interact via messages.

2



OOP

I Objects in real world vs. objects in programming: state
(instance variables), behaviour (methods).

I Abstraction: hide the details
of the implementation
expose the interface;
facilitate interchangeability.

I Encapsulation: bundle data and methods into one unit;
hide the state of the object.

I Visibility: private/protected/public.

3



State

The state of an object is defined by:
I instance variables contain the state that is specific to a

given instance of an object;
I class/static variables contain the state that is shared

between all instances of an object; can be used without
creating an instance of a given class.

Initialisation of the state is typicaly done via:
I default constructor,
I parametrised constructor,
I designated initialiser.

4



Behaviour

Methods are class specific functions that define what the object
does and how it does it:
I instance methods – invoked on an object instance; can

access instance variables for read/write;
I class/static methods – can be used without creating an

instance of the class; cannot access instance variables

5



Inheritance
Inheritance is the creation of a subclass from a previously
existing class; it allows re-use of code:
I inheriting parent methods,
I adding new methods,
I modifying, or overriding, existing methods.

Good reasons for using inheritance are:
I specialisation – subclass is a more specialised form of its

parent;
I specification – subclass implements behaviour described,

but not implemented, by its parent;
I extension – subclass provides new behaviour and

capabilities.

Not the best reasons for using inheritance are:
I limitation – subclass restricts behaviour of the parent class;
I generalisation – subclass modifies behaviour of the parent

to create a more general kind of object.
6



Inheritance vs composition

Composition is where a class includes another class as its
instance variable:
I inheritance test: "is a" relationship;
I composition test: "has a" relationship.

7



Polymorphism

Polymorphism in OOP has to do with the same interface
providing different functionality:
I method overloading – same method, different arguments
I method overriding – same method different behaviour,

depending on

8



Interfaces and abstract classes

I An abstract class defines abstract methods – methods for
which signature is given, but no implementation is
provided.

I In Java an interface is in essence an abstract class.

9



Upcasting and downcasting
Casting refers to treating objects as if they were of different
types.

Upcasting changes the type of an object to that of its parent
class:
I implicit cast – can never fail because child object IS also its

parent object;
I methods added by the child are not available after the

upcast
I parent’s methods that have been overridden by the child

retain the overriden behaviour.

Downcasting changes type type of an object to that of its child
class:
I explicit cast – can fail because a given object may or may

not be an instance of the expected subclass;
I usually done to reverse upcasting;
I generally considered a bad practice.

10


