
Cosc 241
Programming and Problem Solving

Lecture 26 (30/5/2019)
Review

Lech Szymanski
lechszym@cs.otago.ac.nz

1

mailto:lechszym@cs.otago.ac.nz


Exam format

◮ Eight questions, ten points per question.
◮ Each question has a title, indicating its theme.
◮ Write all answers in booklet, not on exam itself even if

there seems to be space available/provided.
◮ Questions are typically divided into three or four parts, and

points are specified for each part.
◮ Previous exams (particularly 2011 onwards) are a good

study guide, but skip material on trees (except as related to
heaps) and graphs. There will be questions on sorting and
divide and conquer algorithms.

2



Words to the wise

A happy grader is a generous grader so:
◮ Start each question on a new page.
◮ If you don’t finish a question and plan to come back to it,

leave an extra page or two.
◮ Be as neat and organized as possible.
◮ Avoid the ‘brain dump’ technique (almost all parts of

questions can be answered fully in a short paragraph at
most).

3



What do you need to know?

Everything!

◮ In principle, anything covered in lectures or in labs is fair
game.

◮ In practice, most of the exam is devoted to material
covered in the lectures.

◮ CS in general and programming in particular are
cumulative subjects, so a certain amount of background is
presupposed (e.g., arrays, references, methods, . . . ).

◮ Exception to the everything rule: material from the Object
Oriented Programming lectures is not on the exam.

4



Algorithms, recursion and algorithmic analysis

◮ What is an algorithm?
◮ How do we describe them?
◮ What (and why) is recursion? This links forward to

recursive data structures.
◮ Who is the big-O? And what does it mean?
◮ Scales of efficiency (is n log n better than n2?)
◮ Common efficiency analyses (nested loops, divide and

conquer).
◮ Remember we aim for “best possible” O estimates. For

instance a O(n log n) algorithm is also O(n2), but the
former estimate is better because it imposes a more
stringent upper bound.

5



Arrays, sorting and searching

◮ Using subarrays (particularly in recursive methods for array
processing).

◮ Finding maximum values, doing swaps.
◮ Searching in unsorted (linear search) and sorted data

(binary search).
◮ Sorting methods (selection, insertion, quick, merge, heap).

6



Random number generators and their uses

◮ Why are random numbers important in computing?
◮ What is the difference between truly random and

pseudo-random numbers?
◮ How are pseudo-random numbers generated?
◮ How can we pick a winner? Shuffle a deck? Choose from

a collection of known or unknown size? What are some of
the efficiency issues?

7



ADT principles, data structures

◮ What is an ADT?
◮ What are the advantages of using ADTs?
◮ What is the relationship between ADT and data structure?
◮ Common ADTs: stack, list, queue – similarities and

differences.
◮ What is the significance of generic types in Java data

structures?

8



Stack and queue ADTs, linked data structures

◮ What is a stack? What is a queue? How are they similar?
How are they different?

◮ How are linked data structures implemented in Java?
◮ One link good, two links bad? What are the issues with

multiple linking?
◮ Room for some “hands on” material here (e.g., ‘What does

this code do?’)

9



Divide and conquer algorithms

◮ What are the three phases of a divide and conquer
algorithm?

◮ What is the complexity of a divide and conquer algorithm if
the non-recursive parts require linear time? Why?

◮ Why might we “bail out” of the recursive part in divide and
conquer on small sets of data?

10



Heaps, heap sort, and priority queues

◮ The heap data structure.
◮ Addition and removal algorithms.
◮ Using heaps for sorting (in place, O(n log n) – best possible

for a comparison based sort).
◮ Priority queue ADT and why heap is an ideal data structure

for it.

11


