Cosc 241
Programming and Problem Solving
Lecture 26 (30/5/2019)
Review

Lech Szymanski
lechszym@cs.otago.ac.nz



mailto:lechszym@cs.otago.ac.nz

Exam format

v

Eight questions, ten points per question.

Each question has a title, indicating its theme.

Write all answers in booklet, not on exam itself even if
there seems to be space available/provided.

Questions are typically divided into three or four parts, and
points are specified for each part.

Previous exams (particularly 2011 onwards) are a good
study guide, but skip material on trees (except as related to
heaps) and graphs. There will be questions on sorting and
divide and conquer algorithms.



Words to the wise

A happy grader is a generous grader so:
» Start each question on a new page.
» If you don’t finish a question and plan to come back to it,
leave an extra page or two.
» Be as neat and organized as possible.
> Avoid the ‘brain dump’ technique (almost all parts of

questions can be answered fully in a short paragraph at
most).



What do you need to know?

Everything!

>

>

In principle, anything covered in lectures or in labs is fair
game.

In practice, most of the exam is devoted to material
covered in the lectures.

CS in general and programming in particular are
cumulative subjects, so a certain amount of background is
presupposed (e.g., arrays, references, methods, .. .).
Exception to the everything rule: material from the Object
Oriented Programming lectures is not on the exam.



Algorithms, recursion and algorithmic analysis

v

What is an algorithm?
How do we describe them?

What (and why) is recursion? This links forward to
recursive data structures.

Who is the big-O? And what does it mean?

Scales of efficiency (is nlog n better than n??)
Common efficiency analyses (nested loops, divide and
conquer).

Remember we aim for “best possible” O estimates. For
instance a O(nlog n) algorithm is also O(n?), but the
former estimate is better because it imposes a more
stringent upper bound.



Arrays, sorting and searching

» Using subarrays (particularly in recursive methods for array
processing).

» Finding maximum values, doing swaps.

» Searching in unsorted (linear search) and sorted data
(binary search).

» Sorting methods (selection, insertion, quick, merge, heap).



Random number generators and their uses

» Why are random numbers important in computing?

» What is the difference between truly random and
pseudo-random numbers?

» How are pseudo-random numbers generated?

» How can we pick a winner? Shuffle a deck? Choose from
a collection of known or unknown size? What are some of
the efficiency issues?



ADT principles, data structures

vvyyy

v

What is an ADT?
What are the advantages of using ADTs?
What is the relationship between ADT and data structure?

Common ADTs: stack, list, queue — similarities and
differences.

What is the significance of generic types in Java data
structures?



Stack and queue ADTSs, linked data structures

» What is a stack? What is a queue? How are they similar?
How are they different?

» How are linked data structures implemented in Java?

» One link good, two links bad? What are the issues with
multiple linking?

» Room for some “hands on” material here (e.g., ‘What does
this code do?’)



Divide and conquer algorithms

» What are the three phases of a divide and conquer
algorithm?

» What is the complexity of a divide and conquer algorithm if
the non-recursive parts require linear time? Why?

» Why might we “bail out” of the recursive part in divide and
conquer on small sets of data?



Heaps, heap sort, and priority queues

» The heap data structure.
» Addition and removal algorithms.

» Using heaps for sorting (in place, O(nlog n) — best possible
for a comparison based sort).

» Priority queue ADT and why heap is an ideal data structure
for it.



