
COSC 241 Week 6: Practical Test 1

This lab is worth 5%. Each lab stream has been divided up into 50-minute slots,
during one of which you will sit the practical test.

Please make sure you come to your scheduled lab stream, and don’t be late.

Overview

Most of the labs that we get you to do during this course are formative in nature; i.e.
you learn new things and acquire new skills during the course of completing them.
This lab is a bit different. Instead of being formative this lab is summative in nature.
It allows you (as well as us) to look back and see what knowledge and skills you have
acquired so far.

In the previous assessed labs you could complete the work at any time before the dead-
line, using whatever resources you wished to. In this lab you must complete the task
during the allocated time, with minimal resources at your disposal. Using only a termi-
nal window, a basic text-editor, javac, and java, you must write some programs which
meet the given specifications.

At first you might think this sounds a bit daunting; however we are not asking you
to create your programs for the first time during your allocated slot. You should have
already written all of the code required for this test during previous labs. All you need
to do during this lab is to be able to reproduce your previous work.

We encourage you to write your code initially using whatever resources you need.
Once you have done this, and are sure that your programs are working correctly, try to
write them again without using any resources (you might need to peek occasionally).
Keep doing this until you can write the code completely unaided. The best and recom-
mended way to prepare for the test is to clearly understand what your code is doing.
That way you don’t have to write it exactly the same way each time. If you prepare
well for this lab then you will find it pretty straightforward. Writing code like this,
without any outside assistance, will build your confidence to tackle more demanding
programming tasks.

Resources

The skeleton code, Coins.java and Tower.java, from week 2 and week 3 will be
provided, as will the associated handouts.

Note: You are not permitted to access your home directory, or any other files or com-
puters, nor may you use the Internet during this lab.



COSC 241 Week 6: Practical Test 1

Part A (1%)

The skeleton code, Coins.java, includes some data fields and a basic constructor. To
this, add two functions:

countHeads() A method that returns an int which is the number of occurrences of
“heads” in the coin tosses.

toString() A method that returns a String representation of the coin tosses, using
H to represent heads and T to represent tails.

Part B (1%)

Part B requires that the toString() method from Part A has been completed. Add to
your Coins class two more constructors:

Coins(String c) Creates a Coins object from a String consisting entirely of the
characters H and T (i.e., the result of applying toString() to the constructed
object should be the original string c).

Coins(int length) Constructs a Coins object consisting of a series of length
coins – the value of each coin should be determined by a random coin toss.

Also add one more method:

countRuns() Returns an int which is the number of runs in this sequence of coins
(a run is a block of coins all showing the same face, so for example in HHTHHHTTT
there are four runs namely HH, T, HHH, and TTT.

Part C (1%)

Create an application file called RecursiveApp.java that contains the following two
functions:

digits(long n) Returns a long equal to the number of digits of its argument

sumOfDigits(long n) Returns a long equal to the sum of the digits of n modi-
fied by the sign of n. That is, sumOfDigits(257) should return 14, whereas
sumOfDigits(-257) should return -14.

Your methods should be static and also use recursion.



COSC 241 Week 6: Practical Test 1

Part D (1%)

Add the following methods to the provided class Tower.java:

height() A method that returns an int equal to the height, i.e., number of blocks, in
the tower.

count(char c) A method that returns an int equal to the number of blocks equal
to c in the tower.

Both methods should be recursive.

Marking

You must complete your programs and get them marked by a demonstrator before
the end of your 50-minute time slot. All of your programs should be in the week06
package. You can check that your programs are working using 241-check as usual. You
can run 241-check (but not 241-submit) in the lab beforehand, as well as during the test.
Note that comments are not required. Also, no style checks are performed (although
it’s still a good idea to keep your code tidy). Each of the four parts of this test are
worth 1%. If you complete them all correctly then you will get receive an extra 1%.
This means that possible marks for this test are 0, 1, 2, 3, or 5. If you are unable to
successfully complete all of the tasks within the allotted time you will be given the
opportunity to do the test again later in the semester.


	Overview
	Resources
	Part A (1%)
	Part B (1%)
	Part C (1%)
	Part D (1%)
	Marking

