
COSC 241 Lab 6: Random nonsense

Now and again you may find yourself with a terrible need for a nonsense word, or
passage of text. Certainly it seems that a lot of the people sending me spam emails
have such a need. A quick google search will find plenty of web pages that may more
or less meet your needs, and if you want something more sophisticated you can even
find sites that generate nonsense scientific papers.

The techniques for generating grammatically correct text are a bit beyond our immedi-
ate means (though not so very much so), so we’re going to concentrate on using a bit
of randomness to try and generate individual words which look plausible. In the end
we’d like to see output like “anterite” but not like “xputzeiw”.

Problem description

The basic problem is “generate a random word of a given length”. To facilitate this
we’ve provided an interface called WordGenerator which specifies exactly that that
is what is required.

We will be generating words in lower case using only the characters ’a’ through ’z’.
This allows a little trick (or if you prefer “hack”) which relies on the fact that internally
to Java char is really an integer type. So for instance (char) (’a’ + 4) is ’e’.
In the BasicGenerator class (also supplied) we simply choose letters uniformly at
random in the required range by generating, for each letter, an int between 0 and 25
(inclusive), adding it to ’a’ and treating the result as a char.

The problem with BasicGenerator is that a typical run of the words it outputs might
look something like: icdwpys, onjaxdm, xqlvaho, bfrhqfc, gftyjcg. This hardly meets
our criterion of “looking plausible”.

The first issue to address is that the letters in English words do not all occur with the
same frequencies. So, the next thing to try is to generate words where the letter fre-
quencies match those from English text (this will be “Part one”). To do this, you need
to know how to choose an item randomly from a list, when each item has an associated
weight (or probability) and the weights add up to 1. If we think of the items as belong-
ing to an array, then each will have an index. We will also have an array, w, of weights,
and we want to choose a random index according to the weights. The basic idea is to
choose a random number between 0 and 1, and then choose the first index such that
the sum of the weights up to that index is larger than the random number chosen. The
following pseudocode describes how to do that:

chooseIndex(w):
i← 0
r ← a random number between 0 and 1
while r > w[i] do

https://www.google.co.nz/search?q=nonsense+word+generator
http://pdos.csail.mit.edu/scigen/


COSC 241 Lab 6: Random nonsense

r ← r − w[i]
i← i+ 1

end while
return i

Unfortunately a generator based on letter frequencies is not much of an improvement.
A typical run might be: cirdesw, mhosstg, eietriw, otnlilt, nardmoi. At least one of these
looks good (the last one) but the others have two letter combinations (or digrams) like
‘mh‘, ‘iw‘, ‘nl‘ that are never, or at best very rarely, seen.

The idea of the next generator is to remedy this by choosing the first letter of each word
according to the frequency with which letters occur as first letters, and from then on
choosing a letter according to the frequency by which letters follow the preceding letter
- that is, if we currently have letter say ’d’ we will look at the frequencies of all the
pairs ’da’, ’db’, . . . , ’dz’ and choose our next letter according to them.

You might be able to find a 26× 26 table giving these frequencies online, but we’ll take
a different and more flexible approach. Start with a large chunk of English text. Process
it one character at a time – for each pair of letters you see, add the second one to a
String associated to the first one. Now, when you need a letter to follow ’d’ just take
the String associated with ’d’ and choose a random character from it.

Here’s a simple example - suppose that our “large chunk” of text was just the word
“abracadabra". Then after processing we’d have the following:

Letter String
a bcdb
b rr
c a
d a
r aa

This wouldn’t be very useful! Suppose we start with ’a’. Half the time the next
letter would be ’b’ (always followed by ’r’ and then by ’a’). One quarter of the
time (each) it would be ’c’ or ’d’ always followed by ’a’. And then we’d begin
again.

But of course the problem with this is that our “large chunk” was much too small and
much too regular. In the second part of the lab we’ll provide a set of strings harvested
from a much larger chunk of text and leave the rest to you.

Provided files

We have provided you with a number of files to help implement your solutions to this
week’s tasks. The directory /home/cshome/coursework/241/pickup/06 contains



COSC 241 Lab 6: Random nonsense

a number of files which you should copy into your ∼/241/06 directory before you
begin. The files WordGenerator.java and BasicGenerator.java have already
been described above. In addition to this you will find

• RandomWords.java - an application class which you can use to help test your
code.

• FrequencyGenerator.java - a skeletion of the class you must implement to
complete part one.

• letter-frequencies.txt - a file containing the frequency of each letter in
normal English text. You should read the numbers from this file into the array w
described in the pseudo-code above when implementing your frequency genera-
tor.

• DigramGenerator.java - a skeletion of the class you must implement to com-
plete part two.

• first-letters.txt - a file containing one thousand letters in the frequencies
that they occur at the start of English words. Your digram generator should select
the first letter of a word at random from this list (using the Random instance).

• continuations.txt - a file containing 26 lines (one for each letter of the alpha-
bet). Each line contains a string of characters associated with the corresponding
letter. So line 1 contains the characters which come after ‘a’, line 5 contains the
characters which come after ‘e’, line 17 contains the characters which come after
‘q’ etc. When constructing a word your digram generator should select each sub-
sequent letter by choosing a random letter (using the Random instance) from the
list of characters associated with the previous letter.

Part one (1%)

Complete the class FrequencyGenerator to implement the basic frequency method
described above. The letter frequencies1 should be read into an array (or equivalent)
from the file letter-frequencies.txt. The Random instance should be used to
obtain the random numbers needed for the algorithm.

1Letter frequencies sourced from http://www.cryptograms.org/letter-frequencies.php



COSC 241 Lab 6: Random nonsense

Part two (1%)

Complete the class DigramGenerator to implement the digram based method de-
scribed above. The contents of first-letters.txt should be read into a string,
and the contents of continuations.txt into an array of strings (or equivalent) from
where they can be accessed in the manner described above.

Reflection and extension

• DigramGenerator is not too bad, but unfortunately we sometimes get words
with “weird” last letters (because some frequent digrams rarely end a word in
English) not to mention unusual beginnings. How might one fix these problems?

• To generate text you can move from digrams of letters, to pairs (or triples) of
words. How well does that work?

• How would you implement the “digram gathering” function? What effect does
the initial chunk of text have?


	Problem description
	Provided files
	Part one (1%)
	Part two (1%)
	Reflection and extension

