
COSC 241 Lab 10: Trees

The basic recursive definition of a general tree (for computer scientists) which stores
values from some class T is that a tree consists of a root which contains a value from T,
together with a list (possibly empty) of trees that also store values from T.

In this lab you’ll be completing the implementation of such a class providing further
practice with recursive data structures and recursive methods on them. In the following
descriptions, all examples given will be with reference to the tree below (with the labels
thought of as String):

food

meat

chicken beef fish

salmon cod tuna shark

fruit vegetable

cabbage

Part one (1%)

A basic implementation of the Tree<T> class has been provided for you in the di-
rectory /home/cshome/coursework/241/pickup/10. It includes some completed
methods and some methods that need to be implemented by you. The declarations of
the incomplete methods are listed below. Complete their implementation so that they
have the intended behaviour.

size() Returns the number of nodes in the tree (in the example, 12).

maxDegree() Returns the largest number of children of any node (in the example, 4).

add(Tree<T> child) Adds the tree child as a new subtree below the root at the
end of the list of children. The example tree could have been obtained by adding
the tree with root “vegetable” and child “cabbage” to a tree with root “food”, and
subtrees as indicated rooted at “meat” and “fruit”.

postOrder() Returns an ArrayList<T> which gives the contents of the nodes for
the postorder traversal. In the example this would be:
chicken, beef, salmon, cod, tuna, shark, fish, meat, fruit, cabbage, vegetable, food
(as an ArrayList<String> of course.)



COSC 241 Lab 10: Trees

Part two (1%)

Another way to represent the contents of a tree as a string is using an indented list.
Here, we first represent the root, and then each of its child subtrees, indented by say
two spaces (and this is applied recursively). For the example tree we would get:

food
meat

chicken
beef
fish

salmon
cod
tuna
shark

fruit
vegetable
cabbage

Implement a method toIndentedString() that performs this representation.

Reflection and extension

• Did you use recursive methods for your implementations? Why or why not?
Think about other ways to do it – what advantages and disadvantages do they
have?

• Perhaps a more useful function than toIndentedString() would be a method
of reading such an indented string (e.g., from an input file) and constructing a
Tree from it (most likely a Tree<String>). How might one implement such a
function?

• For testing purposes and building trees one might like to generate trees randomly
in some way. How could one do that? One issue would be to ensure that we keep
the size within reasonable bounds while allowing “interesting” branching and
depth.


	Part one (1%)
	Part two (1%)
	Marking
	Reflection and extension

