
COSC 241 Lab 11: Faster sorting

After implementing the basic sorting algorithms in the previous lab, we are now ready
to implement some faster sorting algorithms. These faster algorithms are more com-
monly used in professional applications. We shouldn’t forget about insertion or selec-
tion sort though, since they can be faster given a sufficiently small amount of data.

Merge sort

A significant difference between merge sort and the sorts from the previous lab is that
it will be using an additional array rather than sorting in place. We can mostly use the
code from lectures with a couple of tweaks to fit our sorting application. Merge sort
uses a divide and conquer strategy. The basic idea is to split the array into two nearly
even pieces (or sub arrays), sort the pieces, and then merge the sorted results together.
This fits well with a recursive solution. The base case is when a sub array is of length
less than 2. This sub array is already sorted and can be merged with another sorted sub
array to produce a larger sorted sub array. The recursion continues to unwind, making
larger and larger sorted sub arrays until the entire array is sorted.

In pseudocode merge sort can look like this:

mergeSort(left, right)
if left < right

mid = (left + right) / 2
mergeSort(left, mid)
mergeSort(mid + 1, right)
merge(left, mid + 1, right)

And the merge itself can look like this:

merge(left, mid, right)
copy nums[left...right] to temp[left...right]
i = left, j = left, k = mid
while i < mid and k <= right

if temp[i] < temp[k] then nums[j++] = temp[i++]
else nums[j++] = temp[k++]

while i < mid
nums[j++] = temp[i++]

while j <= right
nums[j++] = temp[k++]

Normally the merge would be done from the original array (nums) to the temporary
array and then the result copied back at the end. In this case we do the copying first
and then merge back into the original array so that we can observe it happening.



COSC 241 Lab 11: Faster sorting

Quick sort

Although quick sort has a worst case of O(n2) the average case, like merge sort, is
O(nlogn). It has the advantage of sorting in place without the need for an auxillary
array. The basic idea of quick sort is to take an item from the array to be a pivot.
Put everything that is smaller than the pivot on the left hand side of the array and
everything than is greater than or equal to the pivot on the right hand side. Recursively
sort both parts of the array using quick sort.

There are different ways of partitioning the array and of choosing a pivot. A pseu-
docode implementation of quicksort which uses the first item as the pivot could look
like this:

quickSort(left, right) {
if left < right

p = partition(left, right)
quickSort(left, p)
quickSort(p+1, right)

partition(left, right)
pivot = nums[left]
hole = left, i = left+1, j = right
loop forever

while j > hole && nums[j] >= pivot
j--

if j == hole then exit loop
nums[hole] = nums[j]
hole = j
while i < hole && nums[i] < pivot

i++
if i == hole then exit loop
nums[hole] = nums[i]
hole = i

nums[hole] = pivot
return hole

Heap sort

This is another in place sorting algorithm that is guaranteed to be O(nlogn) in the worst
case. Heap sort sort organises the items of an array into a heap structure, and then
repeatedly performs two steps until the array is sorted. The first step is to to swap the
largest item with the last item in the array (shrinking the heap by one item), and the
second step is to sift the new root of the heap down to restore the heap structure (each
node being greater than or equal to its children).



COSC 241 Lab 11: Faster sorting

We won’t give you any pseudocode for heap sort, but will let you work it out yourself.
It’s helpful to know that when using an array to represent a heap the children of item i
have indexes 2 ∗ i + 1 and 2 ∗ i + 2. In order to sort the array using heap sort you first
heapify the array by calling siftDown() on each index from array.length/2 − 1 back
to the root index (0). After the array has become a heap you then sort it by swapping
the root with the last item (shrinking the heap by 1) and sift down the new root to the
correct place. The siftDown() method just swaps an item with the largest child that
is bigger than it (if such a child exists) and then calls siftDown() on the new index to
continue sifting downwards until it finds its correct place.

We haven’t provided you with any files for this lab. You can just copy all of your
files from the week 9 lab (changing every reference to week09 into week11) and then
implement merge sort, quick sort, and heap sort using one of your previous sort imple-
mentations as a basis. You should uncomment the appropriate lines in Sorter.Type
and SortApp.createSorter() so that your program creates and uses the new sort
implementations that you write. You might also want to slightly increase the time argu-
ment given to Thread.sleep in the update() method so that you can see the faster
sorts more clearly.

As usual you can compile your code like this:

javac -d . -Xlint *.java

And you can run your code like this:

java week11.SortApp 3 < 400-nums

The argument 3 selects merge sort as the sorting method (4 and 5 select quick sort
and heap sort respectively). You should also check that your sort behaves as expected
when using the -g argument to display a graphical view of your sort. You can incre-
ment the comparison counter inside the condition of a loop by adding something like
(++comparisons > 0) to the loop conditions immediately before a comparison is
done.

Marking

In the first part of the lab (worth 1%) you must implement merge sort and quick sort
(both are required to get the 1%).

In the second part of the lab (also worth 1%) you must implement heap sort.

When all of your sorts are working correctly you can use the command 241-check
to make sure they pass all of our tests. If all is well then you can submit them using
241-submit as usual.


	Marking

