
COSC 241 Week 12: Practical Test 2

This lab is worth 10%. It takes place on Tuesday the 21st and Friday the 24th of May.
During the lab time you will get one hour and forty minutes to complete the test. You
must book a time to sit the test on either the Tuesday or Friday. If you don’t get 100%
in the test there will be a chance to resit it on Tuesday the 28th of May.

Please make sure you come to the stream that you have booked, and don’t be late.

Overview

Most of the labs that we get you to do during this course are formative in nature; i.e.
you learn new things and acquire new skills during the course of completing them.
This lab is a bit different. Instead of being formative this lab is summative in nature.
It allows you (as well as us) to look back and see what knowledge and skills you have
acquired so far.

In the regular assessed labs you could complete the work at any time before the dead-
line, using whatever resources you wished to. In this lab you must complete the task
during the allocated time, with minimal resources at your disposal. Using only a termi-
nal window, a basic text-editor, javac, and java, you must write some programs which
meet the given specifications.

Remember we are not asking you to create your programs for the first time during your
allocated slot. You should have already written all of the code required for this test
during previous labs. All you need to do during this lab is to be able to reproduce some
of your previous work.

We encourage you to write your code initially using whatever resources you need.
Once you have done this, and are sure that your programs are working correctly, try to
write them again without using any resources (you might need to peek occasionally).
Keep doing this until you can write the code completely unaided. The best and recom-
mended way to prepare for the test is to clearly understand what your code is doing.
That way you don’t have to write it exactly the same way each time. If you prepare
well for this lab then you will find it pretty straightforward. Writing code like this,
without any outside assistance, will build your confidence to tackle more demanding
programming tasks.

Resources

You will be provided with semi-complete solutions to the lab work from week 4, 5, 9,
and 11. You must implement the methods with missing bodies in order to pass the
tests. Most of the code that you will have to write is code that should have previously



COSC 241 Week 12: Practical Test 2

been written by you. The associated lab handouts are available to view and are located
on the desktop of the test machines. The Java API can also be viewed by entering api in
a terminal.

Note: You are not permitted to access your home directory, or any other files or com-
puters, nor may you use the Internet during this lab.

The code that you will need to complete is as follows:

Part A - TableauApp from week 4 (2%)

Two of the following four methods (randomly selected by us) need to be implemented:

rowLengthsDecrease(int[][] t) A method that returns true if no row is longer
than a preceding row, otherwise false.

rowValuesIncrease(int[][] t) A method that returns true if from left to right
in any row, the integers are increasing, otherwise false.

columnValuesIncrease(int[][] t) A method that returns true if from top to
bottom in any column, the integers are increasing, otherwise false.

isSetOf1toN(int[][] t) A method that returns true if the set of integers used is
{1, 2, . . . , n}where n is the number of cells, otherwise false.

Part B - Tableau from week 5 (2%)

One of the following two methods (randomly selected by us) needs to be implemented:

addToRow(Cell curr, int value) This method takes a cell as a starting point
and follows right pointing links until it finds a value which is greater than the
given value or until the right pointing link is null. If it finds a bigger value then
it replaces it with the given value and returns the previous value. If it comes to
the end of the row it adds a new cell with the given value and returns null.

addValue(Integer value) You will need to take care of the case where the tableau
is empty, as well as implementing the other cases. You can call the addToRow
method to add the value to the first row. If addToRow returns null there is



COSC 241 Week 12: Practical Test 2

nothing more to do. If it returns a value then that value must be inserted into the
row below. If the row below is empty then a new cell should be added as the only
item in that row, otherwise just call addToRow again to add the returned value to
the row below.

Note that if you have to implement the addValue() method in Part B the empty
tableau case has NOT been done for you.

Part C - Selection Sort or Insertion Sort from week 9 (2%)

The sortNums()method of either SelectionSort.java or InsertionSort.java
(chosen at random by us) must be completed.

Selection sort assumes that you know how to pick out the smallest item in an array of
items. We conceptually break the array into two pieces, left and right. We have n items
altogether.

Pick the smallest item in the section from 0 to (n - 1) and swap it with whatever is in
position 0. Pick the smallest item in the section 1 to (n - 1) and swap it with whatever
is in position 1. Now pick the smallest item in section 2 to (n - 1) and swap it with
whatever is in position 2. . . you get the idea. Stop when you get to position n - 2, since
the item now in the last position (n - 1) must be the largest item.

for each position p in the array a except the last one {
find the smallest item from position p to position (n - 1)
swap the smallest item with whatever is at position p now

}

Insertion sort works the same way many people sort a hand of cards. We imagine that
everything to the left of a certain point is already sorted. We take the first item to the
right of that and “pull it out” (leaving a “gap”). We then move everything in the sorted
part one place over to the right until a gap opens up at just the right place for us to
“insert” what we pulled out. Our left-hand-side is still sorted, but now it is one item
longer, and the right-hand-side is one item shorter.

for each position p in array a except the first {
pull out the item at p and store it in variable ‘key’
move each item that is to the left of position p, and is

greater than key, one place to the right
put key in the leftmost vacated position

}



COSC 241 Week 12: Practical Test 2

Part D - Merge Sort or Quick Sort from week 11 (2%)

The sortNums() method (and any dependent methods) of either MergeSort.java
or QuickSort.java (chosen at random by us) must be completed.

mergeSort(left, right)
if left < right

mid = (left + right) / 2
mergeSort(left, mid)
mergeSort(mid + 1, right)
merge(left, mid + 1, right)

merge(left, mid, right)
copy nums[left...right] to temp[left...right]
i = left, j = left, k = mid
while i < mid and k <= right

if temp[i] < temp[k] then nums[j++] = temp[i++]
else nums[j++] = temp[k++]

while i < mid nums[j++] = temp[i++]
while j <= right nums[j++] = temp[k++]

quickSort(left, right)
if left < right

p = partition(left, right)
quickSort(left, p)
quickSort(p+1, right)

partition(left, right)
pivot = nums[left]
hole = left, i = left+1, j = right
loop forever

while j > hole && nums[j] >= pivot
j--

if j == hole then exit loop
nums[hole] = nums[j]
hole = j
while i < hole && nums[i] < pivot

i++
if i == hole then exit loop
nums[hole] = nums[i]
hole = i

nums[hole] = pivot
return hole



COSC 241 Week 12: Practical Test 2

Part E - Heap sort from week 11 (2%)

The sortNums() method (and any dependent methods) must be completed.

Remember that when using an array to represent a heap the children of item i have
indexes 2 ∗ i+ 1 and 2 ∗ i+ 2. In order to sort the array using heap sort you first heapify
the array by calling siftDown() on each index from array.length/2 − 1 back to the
root index (0). After the array has become a heap you then sort it by swapping the root
with the last item (shrinking the heap by 1) and sift down the new root to the correct
place. The siftDown() method just swaps an item with the largest child that is bigger
than it (if such a child exists) and then calls siftDown() on the new index to continue
sifting downwards until it finds its correct place.

The skeletion HeapSort.java that we provide you with contains a swap() method
that will swap two values in the nums[] array referencing i and j and updating the
GUI. To avoid problems you shouldn’t use i and j which are declared in Sorter.java
anywhere else in your heap sort class.

Marking

You must complete your programs and get them marked by a demonstrator before the
end of your time slot. All of your programs should be in the week12 package. You
can check that your programs are working using 241-check as usual. You can run 241-
check (but not 241-submit) in the lab beforehand, as well as during the test. Note that
comments are not required. Also, no style checks are performed (although it’s still a
good idea to keep your code tidy). Each part of the test is worth 2%. No marks are
given for partially completed programs. If you are unable to successfully complete all
of the tasks within the allotted time you will be given the opportunity to do the test
again on the final Tuesday of the semester.

If you just want to check one part of the test using the 241-check script you can do so
like this

PT=A 241-check

to check part A, B, C, D, or E (make sure there are no spaces around the = sign).

If you have any questions about this practical test, or the way it will be assessed, please
see Iain or send an email to ihewson@cs.otago.ac.nz.

mailto:ihewson@cs.otago.ac.nz

	Overview
	Resources
	Part A - TableauApp from week 4 (2%)
	Part B - Tableau from week 5 (2%)
	Part C - Selection Sort or Insertion Sort from week 9 (2%)
	Part D - Merge Sort or Quick Sort from week 11 (2%)
	Part E - Heap sort from week 11 (2%)
	Marking

