Cosc 241
Programming and Problem Solving
Practice with Big-O

Michael Albert
michael.albert@cs.otago.ac.nz

OTAGO

Te Whare o
NEW AND



mailto:michael.albert@cs.otago.ac.nz

True or false?

) n? = 0(3n?)
) m? = O(1000n)
c) 1000n = O(n?)
) n? = O(n? —1000n)



a) Intuitively, what does it mean to say that f = O(1)?

b) What parts of an algorithm or process typically have running
times bounded by O(1)?



‘Best’ bounds

In each of the following give the ‘best’ O bound you can for the
given expressions (here ‘best’ means - the simplest form that
captures the essential growth rate of the given expression).

a) 244+ 12n° +103n
b) 100012 4-2"/1000
c) (n—2)°



Extension

Given two functions f(n) and g(n) is it necessarily the case that
either f(n) = O(g(n)) or g(n) = O(f(n))? What if both functions
are increasing?



a) n? = O(3n?) True.
In fact n® < 3n? for all positive integers n.

b) n? = O(1000n) False.
No matter how big a constant A we choose, if n > 1000A
then n? > A x (1000n).

c) 1000n = O(n?) True.
For n> 1000, 1000n < n?.

d) m? = O(n® —1000n) True.
If n > 2000 then 1000n < n?/2, so n> — 1000n > n?/2. In
particular if we choose A = 2 (or anything bigger), then for
n > 2000, n® < A(n?> —1000n).



o(1)

a)

Intuitively, what does it mean to say that f = O(1)?

Formally, it means that there is some constant A such that
for sufficiently large n, f(n) < A. Since f takes on only
finitely many values before n is “sufficiently large”, we can
say there is a constant C such that for all n, f(n) < C. So,
the intuitive meaning, is that f(n) is bounded above by some
fixed constant.

What parts of an algorithm or process typically have running
times bounded by O(1)?

Typically the preprocessing and postprocessing phases
have such bounds. It should only take constant time to set
up, e.g., the user interface for a program or to shut it down.



‘Best’ bounds

In each of the following give the ‘best’ O bound you can for the

given expressions (here ‘best’ means - the simplest form that

captures the essential growth rate of the given expression).

a) 24 +12n° +103n = O(n®)
The largest of the three terms (for large n) is 12n°® but we
don’t include any constants since O doesn'’t care.

b) 1000m? 4+ 2"/1000 = O(2")
For even moderate values of n, 2" /1000 is much bigger than
100012, so this is the dominant term. Again we don’t care
about the constant multiplier.

o) (n—2)* = 0(n®)
(n—2)3 and n® are not that different, so we ignore the
constant offset. Or, expand

(n—23=n®-6n*+12n—-8

and then argue as in the first example.



Extension

Given two functions f(n) and g(n) is it necessarily the case that
either 1(n) = O(g(n)) or g(n) = O(f(n))?

No. Consider f(n) defined as: if n is odd, f(n) =1, and if n is
even f(n) = n. Define g(n) similarly: if n is odd, g(n) = n, and if
nis even f(n) = 1. Then, for odd n, g(n) = n x f(n) so

g(n) # O(f(n)), while the corresponding argument for even n
shows that f(n) # O(g(n)).

What if both functions are increasing?

No, but constructing an example is a bit trickier. One way is to
define f(n) and g(n) recursively: f(1) = g(1) = 1, and for even
n, f(n) is n times one more than the maximum of f(n — 1) and
g(n—1), while for odd n, f(n) is equal to one more than the
maximum of f(n— 1) and g(n — 1) plus 1. Define g similarly
switching even and odd. Then, both are increasing, but
otherwise the analysis for the previous example applies.



