
Introduction
Lecture 1

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Course overview
2. Course goals
3. COSC 241 and 242
4. Algorithms and Analysis

2

Today’s outline

1. Course overview
2. Course goals
3. COSC 241 and 242
4. Algorithms and Analysis

3

Teaching team

Dr. Steven R. Livingstone
• Lectures
• Office: Owheo building, Room G.30
• Email: s.livingstone@otago.ac.nz

Mr. Iain Hewson
• Labs
• Office: Owheo building, Room G.37A
• Email: ihewson@cs.otago.ac.nz

4

http://otago.ac.nz
http://cs.otago.ac.nz

Material covered

Textbook (recommended): Introduction to algorithms, by
Cormen, Leiserson, Rivest, and Stein, any edition, MIT Press.
I will use 3rd edition section numbers in class.

Other materials
Lecture notes, Lab book, and Assessment
http://www.cs.otago.ac.nz/cosc242

5

http://www.cs.otago.ac.nz/cosc242

Recommended readings

The C Programming Language, by Kernighan and Ritchie,
Prentice Hall, 2nd Edition, 1988. Often called K & R, this classic
is still widely regarded as the best C programming book.

The Unix Programming Environment by Kernighan and Pike

6

https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_Unix_Programming_Environment

Course structure

COSC 242 focuses on learning theoretical concepts (lectures),
which are then solidified through implementation (labs).

Lectures: Mondays and Thursdays, 11am-12pm, AUDIT and
Archway 4

Labs: 2x hours per week
Tutorials: Mondays, 4-5pm, Quad 2. Starts in Week 2.

7

Assessment

8

Item Quantity Form Weight
Lab assessment 1 Submission 2%
Practical test 3 Test 23%
Assignment 1 Submission 15%
Final Exam 1 Test 60%

Assessment: Labs & Practical tests

9

Name Lab number Weight Form Date
Lab assessment 4 2% Submission Friday 17/07
Practical test 7 3% Practical test Tuesday 28/07
Practical test 13 8% Practical test Tuesday 18/08
Practical test 22 12% Practical test Fri 25/09 or Tues 29/09

Labs and practical tests make up 25% of your final grade.
Lab 4 is an assignment-style submission.
Practical tests take place in the lab at a designated time & place.

Academic integrity

Academic integrity means being honest in your studying and
assessments. It is the basis for ethical decision-making and behaviour in
an academic context.
Academic integrity is informed by the values of honesty, trust,
responsibility, fairness, respect and courage.
Students are expected to be aware of, and act in accordance with, the
University's Academic Integrity Policy.

10

Academic Misconduct

Academic Misconduct, such as plagiarism or cheating, is a breach of
Academic Integrity and is taken very seriously by the University.
Types of misconduct include: plagiarism, copying, unauthorised
collaboration, taking unauthorised material into a test or exam,
impersonation, and assisting someone else's misconduct.
A more extensive list of the types of academic misconduct and
associated processes and penalties is available in the University's
Student Academic Misconduct Procedures.

11

Academic responsibility

It is your responsibility to be aware of and use acceptable academic
practices when completing your assessments.
To access the information in the Academic Integrity Policy and learn
more, please visit the University’s Academic Integrity website at
www.otago.ac.nz/study/academicintegrity or ask at the Student
Learning Centre or Library.
If you have any questions, ask Steven or Iain.

12

Academic integrity and misconduct resources

Academic Integrity Policy
www.otago.ac.nz/administration/policies/otago116838.html

Student Academic Misconduct Procedures
http://www.otago.ac.nz/administration/policies/otago116850.html

A brief guide for students
https://www.otago.ac.nz/study/otago703173.pdf

13

http://www.otago.ac.nz/administration/policies/otago116838.html
http://www.otago.ac.nz/administration/policies/otago116850.html
https://www.otago.ac.nz/study/otago703173.pdf

Academic integrity in COSC242

Acceptable and encouraged
• Collaborating with other students on ideas.
• Giving some help to other students by helping them debug.
• All code you submit for any assessment is written by you. This excludes

the scaffolding code provided by the teaching team.

Not acceptable
• Taking over the keyboard and writing a piece of code for someone else.
• Sending someone a copy of your code.
• Copying code from another student, or from an online source.

14

Class Reps Wanted!
proactive, friendly and keen to contribute
to your learning environment?

A great communicator who can represent
your peers?

What's in it for you?

FREE support

Are you?

A reference letter from OUSA for your CV

Professional development training to boost your CV

FREE food

Volunteer to represent your class now!

Scan the QR code above to register your interest in being a class rep or go to
https://classrep.ousa.org.nz/login.php. If you are selected to be a class rep you will receive a

confirmation email. If you have any issues or concerns throughout the semester email
academic@ousa.org.nz or dione@ousa.org.nz

Applications close July 17th

https://classrep.ousa.org.nz/login.php

Lecture attendance

Lecture attendance is expected, but not required.
Attendance is the biggest predictor of university grades.
Research has repeatedly shown that attendance is more
important than standardized admissions test scores (NCEA,
ATAR/OP/SAT), study habits, and study skills [1, 2].

1 - https://goo.gl/x9v46X

2 - https://goo.gl/oQMPTz

17

https://goo.gl/x9v46X
https://goo.gl/oQMPTz

Lecture conventions

Solo activity (by yourself)

Group activity (2-3 people)

Class question

Important slide

18

Today’s outline

1. Course overview
2. Course goals
3. COSC 241 and 242
4. Algorithms and Analysis

19

Course goals

1. Foster a mindset that focuses on the efficiency of your
programs

2. Introduce more advanced algorithms and data structures
than those you met in COSC241

3. Give you experience in building both data structures and
algorithms from scratch

4. Learn a new programming language (C).

20

Goal 1: Mindset of efficiency

Why focus on efficiency?
• We're seeing the end of Moore's Law.
• Moore's Law - the doubling of the number of transistors on

a chip every 2 years - meant that resources became plentiful
and priority shifted from efficiency to ease of coding.

• CMOS, the best semiconductor technology, cannot be
scaled down further, and Moore's Law is breaking down.

• That means we can’t expect hardware to pick up our slack.

21

Goal 2: Advanced algorithms and DS

Why know about more advanced A&DS?
• Because the more advanced algorithms that we’ll cover in

COSC242 allow for greater search efficiency.
• Examples of advanced data structures include RBTs and

hash tables.
• Examples of advanced algorithms include dynamic

programming.

22

Goal 3: Hands on experience

Why bother implementing things that already exist?
• Almost every algorithm and data structure we’ll cover are

available in most common languages.
• But using those implementations can cause serious

problems if you don’t understand the trade-offs.
• You will only learn the intricate details by implementing

them yourself.
• You will also learn not to rely on the code completion

functionality of IDE's uncritically.

23

Goal 4: Learn C

I know Java and Python, why learn C?
• Because C doesn't hide overheads the way Java does.
• C isn’t forgiving like Java, and you’ll develop a deeper

understanding of how computers work.
• Because C remains one of the most popular programming

languages. Given its durability and longevity, if you’re good
at C, you’ll remain readily employable.

24

Programming language popularity

25
https://www.tiobe.com/tiobe-index/

https://www.youtube.com/watch?v=Og847HVwRSI

https://www.tiobe.com/tiobe-index/
https://www.youtube.com/watch?v=Og847HVwRSI

Course goals

Foster a mindset that focuses on the efficiency of your programs
Introduce more advanced algorithms and data structures than those
you met in COSC241
Give you experience in building both data structures and algorithms
from scratch
Learn a new programming language (C). Learning C will happen
primarily in the labs.

26

Lectures, Labs, and C

Sometimes we'll do efficiency content in the lectures, and practical stuff
in the labs.
Therefore, it may seem that labs and lectures are mismatched. This is
intentional and purposeful.
Attending both lectures and labs is very important.
The assignment will be easy if you have completed the labs.
The exam is based on lectures, specifically, in-class examples.

27

Today’s outline

1. Course overview
2. Course goals
3. COSC 241 and 242
4. Algorithms and Analysis

28

COSC 241 and 242

COSC 241 and 242 are tied together by the fact that we revisit some of
the same algorithms.
This is to give you a perspective of how Java and C differ. Both
languages have their strengths and weaknesses.
We will also pay more attention to calculating efficiencies in 242.
COSC242 isn't a math paper, so we won't overwhelm you with
calculating complicated formulas for all the algorithms.
However, we do want you to start getting used to working with big-O
calculations.

29

COSC 241 and 242

We'll keep the math aspect as simple as possible.
The first few lectures are about how to do these calculations in such a
way that you can convince your fellow programmers that you've done it
correctly.
At the same time you'll be learning the basics of C in the labs, so for a
couple of weeks it will seem as if the lectures and labs don't connect.

30

Today’s outline

1. Course overview
2. Course goals
3. COSC 241 and 242
4. Algorithms and Analysis

31

Algorithm analysis

COSC241 introduced you to the analysis of algorithms, and
made the following points:
• To calculate the time efficiency of a program, ignore implementation

details (e.g. clock speed). We even ignore the programming language
used. So we'll talk of algorithms instead of programs.

• How long an algorithm takes depends on how much work the
algorithm has to do.

• The amount of work is the number of basic steps the algorithm
takes.

32

Algorithm analysis

We want to relate the amount of work to the number 𝑛 of
data items that need to be processed (the problem size).
We want to compare the work this algorithm does with that
of other algorithms for producing the same result.

33

Algorithm analysis

Finally, as professional programmers, we will always be part of
a team.
Therefore, we need to know not only how to calculate the
amount of work but how to share our calculation with co-
workers in a clearly understandable way.

34

Algorithms

Programs are written in a programming language such as C or
Java; all details must be spelled out for the compiler.
Algorithms are written in pseudocode: English enriched by
symbols so we can clearly understand the essence of what
must be done without drowning in detail.

35

Pop quiz 1

Other than speed, what other measures of efficiency might
one use in a real-world setting?

36

Insertion sort

Lets look at an one such algorithm, insertion sort.
Insertion sort is an efficient algorithm for sorting a small
number of elements.
Insertion sort works the way many people sort a hand of
playing cards.

38

[1]

Class discussion

Given a deck of cards face down, how would you sort them
into your hand?

39

Sorting problem

Input: A sequence of n numbers a1,a2,a3,..,an
Output: A permutation (reordering) a’1,a2,a’3,..,a’! of the
input sequence such that: a’1< a’2 < a’3 < ... < a’n
Key: The numbers we wish to sort

Lets define a solution using pseudocode.

41

Pseudocode

Pseudocode is similar to programming languages, such as
Java, C, or Python.
Pseudocode is designed for expressing algorithms to humans.
Software engineering issues of data abstraction, modularity,
and error handling are often ignored.
We sometimes embed English statements into pseudocode.

42

Pseudocode solution

Our pseudocode solution will take in an array A[1..n],
containing a sequence of length n, to be sorted.
The algorithm sorts the input numbers in place: it rearranges
the numbers within the array A, with at most a constant
number of them stored outside the array at any time.
The input array A contains the sorted output sequence when
the INSERTION-SORT procedure is finished.

43

Insertion sort

1. for j = 2 to A.length
2. key = A[j]
3. // Insert A[j] into the sorted sequence A[1..j-1]
4. i ß j - 1
5. while i > 0 and A[i] > key
6. A[i + 1] = A[i]
7. i = i - 1
8. A[i + 1] = key

44

j = indicates “current card”

Loop invariant

A[1.. j-1] constitutes the currently sorted hand.
The remaining subarray A[j + 1..n] corresponds to the pile of
cards still on the table.

Loop invariant
At the start of each iteration of the “outer” for loop, the loop
indexed by j, the subarray A[1 .. j-1] consists of the elements
originally in A[1..j-1] but in sorted order.

45

Insertion sort

Team up with the people next to you. Trace the operation of Insertion
Sort on each of the following input arrays:

[1 2 3 4 5]
[5 4 3 2 1]

Questions
1. Which exercise represents a best, and which a worst case?
2. In each case, how many comparisons have to be made between the

value key and array entries when i = 1? When i = 2? When i = n - 1?
3. What is the total number of comparisons in the best case? What

about in the worst case?
46

Insertion sort

Questions to think about
1. How much work does insertion sort do?
2. How does this compare with other sorting algorithms?

Answering these two questions will take us several lectures!

48

Insertion sort

Important questions
1. Is the amount of work done by insertion sort a lot or a

little? What benchmark can we use?
2. Is it the amount of work for a specific size of input that we

care about, or whether the algorithm scales up?

49

Landmarks

We saw that the amount of work done by Insertion Sort, in the worst
case, is roughly indicated by:

𝑓 𝑛 = 1 + 2 +⋯+ 𝑛 − 1 =
𝑛 𝑛 − 1

2
=
𝑛! − 𝑛
2

If you’d like to see how we arrived at this function, see Section 2.1 of
the textbook.

50

Landmarks

Insertion Sort
𝑓 𝑛 = 1 + 2 +⋯+ 𝑛 − 1 = " "#$

!
= "!#"

!

We'd like to tie this in to some special landmark functions,
which are given by assigning to input n the outputs:

51

Landmarks

These simple functions are landmarks in the sense that we use their
rates of growth to group other functions into classes.
Functions that most closely resemble, say, 𝑛! form one class, those
resembling 𝑛" another, etc.

52

Rates of Growth
Growth rate means how fast its output f(n) increases in size as the
input n gets bigger. Intuitively, a function with a slow rate of growth
scales up better than a function having a high rate of growth.

53

Rates of Growth (Zooming out…)

54

Order of growth
description function
constant 1
logarithmic log N
linear N
linearithmic N log N
quadratic N2

cubic N3

exponential 2N

factorial N!

Commonly encountered
order-of-growth functions

Suggested reading

Insertion sort is discussed in section 2.1*.

*Section numbers refer to those in the 3rd edition.

55

Solutions

56

Pop quiz 1

Other than speed, what other measures of efficiency might
one use in a real-world setting?

Answers
Memory consumption, bandwidth usage, hardware design

57

Card sorting solution

1. We start with an empty left hand and the cards face down on
the table.

2. We then remove one card at a time from the table and insert it
into the correct position in the left hand.

3. To find the correct position for a card, we compare it with each
of the cards already in the hand, from right to left.

4. At all times, the cards held in the left hand are sorted, and
these cards were originally the top cards of the pile on the
table.

58

Insertion sort

These examples and others give us an understanding of
Insertion Sort as being better when input data is already
nearly sorted and worse when input data is nearly reverse
sorted.

Best case: 1+1+1+...+1 = n-1
Worst case: 1 + 2 + 3 + 4 = 1 + 2 + ... + (n-1) = n(n-1)/2

59

References

1. Introduction to algorithms, 2009, by Cormen, Leiserson,
Rivest, and Stein, any edition, MIT Press (3rd edition).

60

Image attributions

61

• This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

