
C programming
Lecture 2

COSC 242 – Algorithms and Data Structures

Are You:

□ Proactive, friendly and keen to contribute to
your learning environment?

□ A great communicator who can represent your
peers?

What’s in it for you?

□ Kudos & Karma

□ Great friendships

□ Access to FREE professional training
opportunities and support

□ A feed (or three)

□ A reference letter from OUSA for your CV

□ Invitations to Class Reps social events
throughout the year

Talk to your lecturer or email:
classrep@ousa.org.nz

2

http://ousa.org.nz

Class reps

3

• https://www.ousa.org.nz/support/class-reps

https://www.ousa.org.nz/support/class-reps

Lecture conventions

Solo activity (by yourself)

Group activity (2-3 people)

Class question

Important slide

4

Today’s outline

1. C and memory
2. Pointers
3. Arrays
4. Memory management

5

Today’s outline

1. C and memory
2. Pointers
3. Arrays
4. Memory management

6

C and Java

C and Java share a lot of the same syntax.
This is intentional, as Java was designed to be familiar to
programmers who were already experienced in C and C++
Thankfully, this ‘learning boost’ is symmetric: knowing Java
will facilitate your learning of C.
But the two languages differ in some important, and not so
important ways…

7

&

Comparing C and Java

8

C Java
A procedural programming language. An Object-Orientated language.

Developed by Dennis M. Ritchie in 1972. It was a
successor to B, developed earlier by Ken Thompson
and Ritchie in 1969.

Developed by James Gosling in 1995

Memory allocation can be done by malloc Memory allocation can be done by the new keyword.

Memory allocated to variable is freed using free A compiler will free up the memory by automatically
calling the garbage collector.

Is a middle-to-lower level language. It is closer to the
machine level and its architecture.

A high-level language. The JVM translates Java
bytecode into machine language through either a just-
in-time compiler (JIT), or at runtime with the
interpreter.

Uses pointers Uses references

Many more differences [1, 2]

https://www.geeksforgeeks.org/difference-between-java-and-c-language/
https://www.guru99.com/difference-between-java-and-c.html

Memory management

An important difference between C and Java is how memory is
managed. This includes allocation and deallocation.
In Java, memory is largely managed automatically. This means
fewer bugs, but entails a performance penalty.
In C, memory is managed manually (i.e. by the programmer).
This leads to more bugs, but increased performance.

9

Topology and memory of an actual computer

10https://www.open-mpi.org/projects/hwloc/

A programmer’s view of memory

As programmers, we don’t worry about the low-level details of
specific machine architectures.
Instead, we view memory as an array. In most modern
computers, main memory (RAM) is divided into bytes. Each
byte holds 8 bits:

11

1 1 1 1 0 0 1 0

Question: what number do we have?

Bytes and addresses

Each byte of memory has a unique address to distinguish it
from other other bytes in memory.
With n bytes of memory, addresses range from 0.. n-1.

12

Address Contents

0 10010011

1 01010101

2 00001111

3 11000011

… …

n-1 11001100

What are variables?

#include <stdio.h>

int main()
{

int my_var;

my_var = 9098;
printf("%d\n", my_var);
return 0;

} 13

Consider the following C code:

What are variables?

14

.cfi_def_cfa_register %rbp
subq $16, %rsp
movl $0, -4(%rbp)
movl $9098, -8(%rbp) ## imm = 0x238A
movl -8(%rbp), %esi
leaq L_.str(%rip), %rdi
movb $0, %al
callq _printf
xorl %esi, %esi
movl %eax, -12(%rbp) ## 4-byte Spill
movl %esi, %eax
addq $16, %rsp
popq %rbp
retq
.cfi_endproc

Assembly

#include <stdio.h>

int main()
{

int my_var;

my_var = 9098;
printf("%d\n", my_var);
return 0;

}

Consider the following C code: gcc -S -c my_var.c

Variables have a memory address

15

#include <stdio.h>

int main()
{

int my_var;
// This is a pointer
int *p_var;

my_var = 5;
// Store mem address of my_var in p_var
p_var = &my_var;

printf("Value: %d\n", my_var);
printf("Address: %p\n", p_var);

}

This code…

Variables have a memory address

16

#include <stdio.h>

int main()
{

int my_var;
// This is a pointer
int *p_var;

my_var = 5;
// Store mem address of my_var in p_var
p_var = &my_var;

printf("Value: %d\n", my_var);
printf("Address: %p\n", p_var);

}

This code…

Value: 5
Address: 0x7ffee6fd659c

Produces this on my machine…

Pointers

Memory addresses are represented by numbers[1].
Their range of values may differ from integers, so we can’t
store those addresses in an integer type variable.
Instead, we store memory addresses in pointer variables.
When we store the address of my_var in the pointer p_var,
we say that p_var “points to” my_var.

17

p_var my_var

Declaring a pointer

We declare a pointer variable in much the same way as any
other variable.
The only difference is that the name of the variable must be
preceded by an asterisk ‘*’:

int *p_var; /* can point to an integer variable */

18

Pointer type

Every pointer variable can only point to objects of a
particular type. This is called the referenced type.

int *i; /* Points only to integers */
char *j; /* Points only to characters */
double *k; /* Points only to doubles */
int *l[n]; /* Array of pointers, each points to ints */

19

Address and indirection operators

& (address) operator - Find the address of an initialized variable.
If my_var is a variable, then &my_var is the address of my_var in memory.

* (indirection) operator - Access the object that a pointer points to.
If *p_var points to my_var, then *p_var represents the object my_var

20

Address and indirection operators
int my_var, *p_var; /* Declare variables */
p_var = &my_var; /* p_var now points to my_var */

p_var = 5; / my_var now holds 5 */

my_var = 12; /* my_var now holds 12 */

21

?
p_var my_var

5
p_var my_var

12

p_var my_var

Pop quiz 1
• What will be output by the following:

char my_var, *p_var;
p_var = &my_var;
my_var = 'x’;
*p_var = 'a’;
printf("%c\n", my_var);
printf("%c\n", *p_var);

Answers
• x then a
• a then a
• x then x

22

Reminder: Pointer to a memory address

24

#include <stdio.h>

int main()
{

int my_var;
// This is a pointer
int *p_var;

my_var = 5;
// Store mem address of my_var in p_var
p_var = &my_var;

printf("Value: %d\n", my_var);
printf("Address: %p\n", p_var);

}

Value: 5
Address: 0x7ffee6fd659c

Output

Address and indirection operators

You can think of * as the inverse of &.
Applying & to a variable produces a pointer to the variable.
Applying * to the pointer takes us back to the original variable:

int x;
int y = *&x; /* same as y = x */

25

Pop quiz 2

What might the following code do?

int *my_var;
*my_var = 55;
printf("%d\n", *my_var);

26

A common bug

This is a common error in C programming.
Declaring a pointer sets aside space for a pointer, but it doesn’t make it
point to an object.

int *i; /* points nowhere in particular */
i = 7; / error. Where should I put this? */

28

Arguments are pass-by-value

In C, function arguments are passed by value.

When a function is called, each argument is evaluated. The argument’s
value is then assigned (copied) to the corresponding parameter in the
callee function.

As the parameter contains a copy of the argument’s value, any changes
to the parameter in the callee function doesn’t affect the argument in
the caller function.

This is the same behavior in Java.

29

Example: Pass by value

30

#include <stdio.h>

void change_param(int aparam) {
aparam = 7;
printf("2. %d\n", aparam);

}
int main(void) {
int variable;
variable = 5;
printf("1. value = %d\n", variable);
change_param(variable);
printf("3. value = %d\n", variable);

}

This code…

1. Value = 5
2. 7
3. Value = 5

Produces:

Pass by value with pointers

Pass by value also operates when pointers are used as function
arguments.
With a pointer, the “value” is the memory address (what’s being
pointed to).
That is, the ‘value’ that is passed (copied) from the caller’s argument
into the callee’s parameter is the memory address.

31

Example: Swapping numbers

Say we have two variables, a and b. We want to swap their contents.
This swap operation needs to happen frequently, as it is used in a
sorting algorithm.
We decide to implement this naively using primitives.

32

Example: Swapping numbers (naïve)

33

void swap(int n, int m)
{

int temp = n;
n = m;
m = temp;

}

int main()
{

int n1 = 55;
int n2 = 77;
printf("1. n1 = %d | n2 = %d\n", n1, n2);
swap(n1, n2);
printf("2. n1 = %d | n2 = %d\n", n1, n2);
return 0;

}

1. n1 = 55 | n2 = 77
2. n1 = 55 | n2 = 77

Output

Not what we wanted…

Example: Swapping with pointers

34

void swap(int *n, int *m)
{

int temp = *n;
*n = *m;
*m = temp;

}

int main()
{

int n1 = 55;
int n2 = 77;
printf("1. n1 = %d | n2 = %d\n", n1, n2);
swap(&n1, &n2);
printf("2. n1 = %d | n2 = %d\n", n1, n2);
return 0;

}

1. n1 = 55 | n2 = 77
2. n1 = 77 | n2 = 55

Output

Success!

C pointers vs Java References

Question: Aren’t C pointers the same thing as references in Java?
Answer: No, they are not the same, but they are conceptually related.

35

&

C pointers vs Java References

Java reference is a variable that refers to something else, and can be
used as an alias for that thing.
When we pass a reference (object) as an argument, the refence to that
object is copied into the parameter, not the object itself.
A pointer is a variable that stores a memory address. It acts as an alias
to what is stored at that memory address.
When we pass a pointer as an argument, the address is copied into the
parameter.

36

&

C pointers vs Java References

“They sound the same to me. Are they really different?”
Yes. A pointer is a reference, but a reference is not necessarily a
pointer. Pointers can do more things than references. Such as:
Pointer arithmetic – As pointers are variables, we can do clever
arithmetic to move around memory. This also allows us to navigate
around arrays with concise syntax.
Speaking of arrays...

37Pointers can do more than this, such as typecasting, but we won’t go into that…

Arrays in Java

38

public class ArrayBounds {

public static void main(String[] args) {

int array[] = new int[5];

int i;

for (i = 0; i < 5; i++)

array[i] = i;

for (i = 0; i < 6; i++)

System.out.println(array[i] + ", ");

System.out.println();

}

}

This code…
Exception in thread "main" 0,
java.lang.ArrayIndexOutOfBoundsException:
Index 5 out of bounds for length 5
at mic.ArrayBounds.main(ArrayBounds.java:13)
1,
2,
3,
4,

Produces:

Arrays in C

39

#include <stdio.h>

int main(void) {
/* declares an array of 5 ints */
int array[5];
int i;
for (i = 0; i < 5; i++)

array[i] = i;
for (i = 0; i < 6; i++)

printf("%d ", array[i]);
printf("\n");

return 0;
}

This code…

0 1 2 3 4 32766

Produces:

There are no compile checks to make sure
you don't access anything past the end of
the array.

Generally there are no runtime checks
either. It might cause a runtime error (seg
fault or similar), but it may not.

Accessing outside of array bounds is
defined as “undefined behavior”.

?

Segmentation fault

40

#include <stdio.h>

int main(void) {
int array[] = {0, 1, 2, 3, 4};
printf("array[0] is %d\n", array[0]);
/* Read access beyond bounds */
printf("array[10] is %d\n", array[10]);

/* Write access beyond bounds */
array[10] = 11;
printf("array[10] is %d\n", array[10]);
return 0;

}

This code…

array[0] is 0
array[10] is 1893035209
array[10] is 11
[1] 17659 segmentation fault

Produces:

A segmentation fault is caused by the
program attempting to access memory it is
not allowed to access.

Arrays are pointers too in C

41

#include <stdio.h>

int main(void) {
int array[5];
int i;
int *ptr;
ptr = array;
for (i = 0; i < 5; i++)

*ptr++ = i;
for (i = 0; i < 5; i++)

printf("%d ", array[i]);
printf("\n");
return 0;

}

This code produces the same output..

0 1 2 3 4

Produces:

Arrays are pointers too in C

42

#include <stdio.h>

int main(void) {
int array[5];
int i;
int *ptr;
ptr = array;
for (i = 0; i < 5; i++)

*ptr++ = i;
ptr = array;
for (i = 0; i < 5; i++)

printf("%d ", *ptr++);
printf("\n");
return 0;

}

Likewise with this code…

0 1 2 3 4

Produces:

Syntactic sugar

In fact, the compiler converts:
array[3]
to
*(array+3)

array is a memory address, and we add 3 to the address to get the
memory address of the third element of the array.

This is the reason most programming languages start indexing arrays at 0.
The index is the amount to add to the base memory address.

43

Dynamic arrays
If we don't know the size of an array or data structure at runtime, then we have to
use dynamic memory allocation:

44

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int i, *array;

array = (int *)malloc(5 * sizeof(int)); /* allocates memory */

for (i = 0; i < 5; i++)

array[i] = i; /* access an element as usual */

for (i = 0; i < 5; i++)

printf("%d ", array[i]);

printf("\n");

free(array); /* deallocates the array */

return 0;

}

0 1 2 3 4

Produces:

Why manual memory management?

If you want robust and secure code, then avoid manual memory
management if you can.
If you want code to go as fast as it can and use as little memory as it
can, then manual memory management is probably needed.

45

Why manual memory management?

It is better to de-allocate memory in the same scope as it was allocated.
Try to organise your code so that if you allocate something in a
function, you also de-allocate it in the same function.
You can't always achieve that with dynamic structures like lists and
trees.
In that case, try to hide allocation and deallocation behind an API.

46

Real-time C to Assembly

Would you like to see C compiled to Assembly in real-time?
Visit https://gcc.godbolt.org

47

https://gcc.godbolt.org/

Helpful resources on proofs

C books
• The C Programming Language, by Kernighan and Ritchie, Prentice

Hall, 2nd Edition, 1988.
• C Programming: A modern approach, by K. N. King, W. W. Norton &

Company, 2nd Edition, 2008.

If you find K&R’s style too dense or brief, then King’s book is another
excellent option.

48

https://en.wikipedia.org/wiki/The_C_Programming_Language
http://knking.com/books/c2/index.html

Solutions

49

Pop quiz 1
• What will be output by the following:

char my_var, *p_var;
p_var = &my_var;
my_var = 'x’;
*p_var = 'a’;
printf("%c\n", my_var);
printf("%c\n", *p_var);

Answers
• x then a
• a then a
• x then x

50

Pop quiz 2

• What might the following code do?

int *my_var;
*my_var = 55;
printf("%d\n", *my_var);

51

Output – crashes!
[1] 83447 segmentation fault ./simple

References and attributions

52

1. C Programming: A modern approach, by K. N. King, W. W.
Norton & Company, 2nd Edition, 2008.

http://knking.com/books/c2/index.html

Image attributions

53

• This Photo by Unknown Author is licensed under CC BY

• This Photo by Unknown Author is licensed under CC0

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses, the
attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/
https://freesvg.org/questioning-boy
https://creativecommons.org/publicdomain/zero/1.0/

