
Induction examples
Lecture 5

COSC 242 – Algorithms and Data Structures



Today’s outline

1. Proving the sum of consecutive natural numbers
2. Divisible by 3
3. Proving the runtime of Insertion sort
4. More examples
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Recall: Steps of Induction

1. Base case: Verify that 𝑃 1 is True.
2. Induction step: Use the assumption that 𝑃 𝑛 is True, to prove that 

𝑃 𝑛 + 1 is True.

The hypothesis in Step 2, that our statement holds for a particular n, is 
called the induction hypothesis. 
To prove the inductive step, we assume the induction hypothesis for n,
and then use this assumption to prove that the statement holds for n	+	1. 
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Replace n with n+1

1. Base case: 𝑃 1 : ∑!"#$ # #%#
&

= 1

2. Induction step: We now use the assumption that 𝑃 𝑛 is True to 
show that 𝑃 𝑛 + 1 is also True.

We start by replacing all instances of n in 𝑃 𝑛 with n+1.

𝑃 𝑛 + 1 : &
!"#

$%#

𝑘 =
𝑛 + 1 𝑛 + 1 + 1

2
=

𝑛 + 1 𝑛 + 2
2
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Make the left side match the right side

We now take the left side of the equality, and try to make it look like 
the right side of the equality:

𝑃 𝑛 + 1 : +
!"#

$%#

𝑘 =
𝑛 + 1 𝑛 + 2

2
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Left side Right side

Make this Look like this



Make the LHS match the RHS

𝑃 𝑛 + 1 : +
!"#

$%#

𝑘 = +
!"#

$

𝑘 + 𝑛 + 1

7

Left side

We write this as sum of all numbers up to n, then add n+1, the next 
number in the sequence.



Use the assumption that P(n) is True

We now use the assumption that 𝑃 𝑛 is True, by replacing 
∑!"#$%# 𝑘 with ⁄n 𝑛 + 1 2.

𝑃 𝑛 + 1 : +
!"#

$%#

𝑘 = +
!"#

$

𝑘 + 𝑛 + 1 =
𝑛 𝑛 + 1

2
+ 𝑛 + 1

We now use algebra to show the two sides of the equality are 
equivalent.

8



Rearranging the left hand side

𝑃 𝑛 + 1 :
𝑛 𝑛 + 1

2
+ 𝑛 + 1 =

𝑛 + 1 𝑛 + 2
2

Left hand side becomes:

𝑛 𝑛 + 1
2

+ 𝑛 + 1 =
𝑛 𝑛 + 1 + 2 𝑛 + 1

2

𝑛! + 𝑛 + 2𝑛 + 2
2 =

𝑛 + 1 𝑛 + 2
2

Conclusion: Since both the base case and the inductive step have been proved, by 
mathematical induction the statement P(n) holds for every natural number n.  ∎ 9

Left side Right side

Or, ! !"#
$

+ 𝑛 + 1 = 𝑛 + 1 !
$
+ 1



Key to induction

Our ability to relate P(n+1) to P(n), which permits us to use the 
induction hypothesis that P(n)	is True, is the key to our success of 
using proof by induction.

When considering a proof technique, and you are unable to relate 
P(n+1) to P(n), then another technique may be needed.

However, if you can relate P(n+1) to P(n), then induction is easier to 
use than almost any other proof technique.
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Confused by the proof?

This Kahn Academy video provides an even gentler introduction to this 
proof [1].
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https://www.khanacademy.org/math/algebra-home/alg-series-and-induction/alg-induction/v/proof-by-induction
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Divisible by 3

Lets return to our first example in Lecture 04 that pushed us to 
examine mathematical induction [L04, Slide #39].

Consider the set X ∈ ℝ, where
X = {3, 12, 33, 72, …}

Where X is given by 𝑓 𝑛 = 𝑛' + 2𝑛
Are all the elements of X divisible by 3?
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Pop quiz 1

Question
Does this example lend itself to proof by induction?  Why?

Where X is given by 𝑓 𝑛 = 𝑛' + 2𝑛
Are all the elements of X divisible by 3?
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Proof
Base case: 𝑓 1 = 1* + 2 , 1 = 3 - True
Inductive step: 𝑃 𝑛 + 1 : 𝑓 𝑛 + 1 = 𝑛 + 1 * + 2 , 𝑛 + 1

𝑓 𝑛 + 1 = 𝑛 + 1 * + 2 , 𝑛 + 1
= 𝑛 + 1 𝑛 + 1 𝑛 + 1 + 2𝑛 + 2
= 𝑛+ + 2𝑛 + 1 𝑛 + 1 + 2𝑛 + 2
= 𝑛* + 3𝑛+ + 3𝑛 + 1 + 2𝑛 + 2
= 𝑛* + 2𝑛 + 3𝑛+ + 3𝑛 + 3
= 𝑓(𝑛) + 3𝑛+ + 3𝑛 + 3
= 𝑓(𝑛) + 3 , 𝑛+ + 𝑛 + 1

Conclusion: Since both the base case and the inductive step have been proved, the 
statement P(n) is True for n+1, and so the proof is complete. ∎
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Insertion sort

In lecture L01, we stated that the run time of insertion sort was roughly 
indicated by 0 + 1 + 2 + 3 +⋯+ n − 1 = $ $.#

&
= $!.$

&
. 

Section 2.1 of the text explains how we arrived at that equation.
This example is slightly different to our earlier proofs, as we have a left 
hand side (LHS) and a right hand side (RHS):

𝑙 𝑛 = 1 + 2 +⋯+ 𝑛 − 1

𝑟 𝑛 =
𝑛 𝑛 − 1

2
We want to show that l(n) = r(n) for all n ≥ 1
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Class challenge 1

How did we arrive at ∑!"#$.# 𝑘 = $ $.#
&

?
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Solve insertion sort with induction

Base case: 𝑙 1 = 0 = 𝑟 1 = # #.#
&

= 0

Inductive step: assume 𝑙 𝑛 = 𝑟(𝑛), which is our 𝑃 𝑛 induction 
hypothesis, and use it to show that 𝑙 𝑛 + 1 = 𝑟 𝑛 + 1

𝑙 𝑛 + 1 = 1 + 2 +⋯+ 𝑘 − 1 + 𝑘
= 𝑙 𝑛 + 𝑛 = 𝑟 𝑛 + 1

𝑟 𝑛 + 1 = ⁄𝑛 + 1 𝑛 + 1 − 1 2
= ⁄𝑛 + 1 𝑛 2
= ⁄𝑛& + 𝑛 2
= ⁄𝑛& − 𝑛 + 2𝑛 2
= ⁄𝑛& − 𝑛 2 + ⁄2𝑛 2
= 𝑟 𝑛 + 𝑛 = 𝑙 𝑛 + 1
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Lets try and make this look like 

our RHS(n) = !!%!
$

Conclusion: By P.M.I, the statement P(n) is True for n+1, and so the proof is complete. ∎
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Recursively defined sets

We can use induction proofs on any set that is recursively defined.
For example, we can define the set of natural numbers, ℕ as:

Base case: 0 ∈ ℕ
Inductive step: if 𝑛 ∈ ℕ, then 𝑛 + 1 ∈ ℕ

Similarly, the set of prime numbers, ℙ as:
Base case: 2 ∈ ℙ
Inductive step: 𝑝 ∈ ℙ, if and only if, 𝑝 ≠ 𝑐𝑛 for some constant c, and 
then 𝑛 < 𝑝
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Prove that 𝑛! = 𝑂 2"

Prove that 𝑛& = 𝑂 2$ .
We begin by stating the definition of Big-O:
Show that there exists some c, n0 such that 𝑛& ≤ 𝑐 F 2$ for all n ≥ n0

Lets choose appropriate values of c, n0

c = 1, n0 = 4
Lets rewrite as a more traditional induction proof:
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Prove that 𝑛! = 𝑂 2"
Prove that 𝑛& ≤ 2$ for all n ≥ 4
Base case: 4& = 16 ≤ 2/ = 16
Induction hypothesis: 2$ ≥ 𝑛& for some n ≥ 4
Inductive step: 2$%# ≥ 𝑛 + 1 & = 𝑛& + 2𝑛 + 1
2$%# = 2 F 2$

= 2$ + 2$
≥ 𝑛& + 𝑛&
≥ 𝑛& + 𝑛 F 𝑛
≥ 𝑛& + 4 F 𝑛
≥ 𝑛& + 2 F 𝑛 + 2 F 𝑛
≥ 𝑛& + 2 F 𝑛 + 8
≥ 𝑛& + 2 F 𝑛 + 1
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Lets use our induction hypothesis here, that 2n > n2

Lets use the second part of our induction hypothesis, n ≥ 4

Lets use the second part of our induction hypothesis, n ≥ 4

Conclusion: Since both the base case and the inductive 
step have been proved, the statement P(n) is True for n+1, 
for all n > 4. ∎



Class challenge 2

Prove that 2n = O(n!), for some c, n0, such that 2n < n! for all n > n0
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Helpful resources on proofs
The textbook does not cover mathematical proofs. Instead, you may 
find the following resources helpful:
Free resources
• Data Structures & Algorithm Analysis, C. A. Shaffer, 2013, Dover. [link]

• Mathematical Reasoning: Writing and Proof, T. Sundstrom, 2020, Grand Valley 
State University. [link]

• Proofs and Mathematical Reasoning, A. Stefanowicz, 2014, University of 
Birmingham. [link]

• American Institute of Mathematics. [link]

Paid resources

• How to read and do proofs, D. Solow, 2013, Wiley. 40

http://people.cs.vt.edu/~shaffer/Book/
https://scholarworks.gvsu.edu/books/24/
https://www.birmingham.ac.uk/university/colleges/eps/STEM/EPS-Undergrad-Internships-2014/mathematical-proof-and-reasoning.aspx
https://aimath.org/textbooks/approved-textbooks/


Solutions
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Pop quiz 1

Question
Does this example lend itself to proof by induction?  Why?

Where X is given by 𝑓 𝑛 = 𝑛' + 2𝑛
Are all the elements of X divisible by 3?

Answer
For every integer 𝑛 ≥ 1, “something happens”.
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“f(n) is divisible by 3”



Class challenge 1

How did we arrive at ∑!"#$.# 𝑘 = $ $.#
&

?

Lets write out our series going forwards, and backwards:
1 + 2 +⋯+ 𝑛 − 1
𝑛 − 1 + 𝑛 − 2 +⋯+ 1

Lets now add the two series together:
1 + 𝑛 − 1 + 2 + 𝑛 − 2 +⋯+ 1 = 
𝑛 + 𝑛 +⋯+ (𝑛)

We now have n-1 many n’s. à𝑛 ∗ (𝑛 − 1). But since we added two series together, 
we need to divide our result by 2, producing: ∑!"#$-#𝑘 = $ $-#

+
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Class challenge 2
Prove that 2$ ≤ 𝑛! for all n ≥ 4

Base case: 2. = 16 ≤ 4! = 4 ∗ 3 ∗ 2 ∗ 1 = 24
Induction hypothesis: 2$ ≤ 𝑛! for some n ≥ 4

Inductive step: 2$%# ≤ 𝑛 + 1 !
𝑛 + 1 2$ ≤ 𝑛 + 1 𝑛!
𝑛 + 1 2$ ≤ 𝑛 + 1 !

Since n + 1 > 2, then 𝑛 + 1 2$ > 2 , 2$ = 2$%#

Therefore: 2$%# ≤ 𝑛 + 1 ! for all n ≥ 4

Conclusion: Since both the base case and the inductive step have been proved, the 
statement P(n) is True for n+1, for all n > 4. ∎
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Lets multiple both sides of inequality by (n+1)
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