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Binary Trees

In COSC241, you were introduced to a data structure called a heap 
where a tree node was usually bigger than all it's children. Most heaps 
used are binary trees (maximum of 2 children).

4



Binary search trees

A binary search tree (BST) is a binary tree such that all children to the 
left of a node are less than the node and all children to the right are 
greater than the node:
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Hash Tables

Hash tables are convenient when:
• Maximum size of table is known beforehand
• Actual size does not fluctuate too much or spend too much time at 

a small fraction of the maximum size
• The emphasis is on insertion and retrieval.
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BSTs or hash tables?

But are hash tables are not good when the app needs to:
• Perform many deletions.
• Perform traversals. For example, print out items in order of 

increasing key values.
• Use dynamic storage, as max tablesize is unknown, or size fluctuates 

a lot.
BSTs are good for very dynamic problems, or if traversals are needed.
But they come at a cost: insertion and deletion are O(log n) on average, 
and O(n) in the worst case.
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BST definition 

A binary tree T is either
• The empty tree, or
• A root node containing a key field and data fields, a left subtree TL, 

and a right subtree TR.

Leaves: Nodes with empty left and right subtrees.
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BST Property

A binary tree T has the BST-property if:
• nodes in T have a key field of ordinal type, so they can be ordered 

by <
• for each node N in T, N's key value is greater than all keys in its left 

subtree TL and less than all keys in its right subtree TR, and TL and TR
are binary search trees.
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BST
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Example 1

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No
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Example 2

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No
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Example 3

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No
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Example 4

Does this tree satisfy the BST property? 
If not, why not?

Answers
• Yes
• No
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Example 5

Does this tree satisfy the BST property? 
If not, why not?

Answers
• Yes
• No
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Definition: Height of a BST

The height of a BST is the number of edges from the root to the deepest 
leaf.
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Definition: Depth of a node

The depth of a node is the number of edges from that node to the root 
of the tree.
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Height vs Depth
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Definition: Complete BST

A complete BST is a BST where each level, except possibly the last, is 
completely filled, and all nodes are as far left as possible.
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Definition: Fully complete BST

A fully complete BST, sometimes called a perfect BST, is a BST where 
each level is completely filled.
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Proof

Theorem: The number of nodes in a fully complete binary tree of 
height h is n = 2h+1 - 1.
Lets prove this.
Base case: h = 0. Then, 20+1 – 1 = 2 - 1 = 1
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Proof

Assumption:
Inductive step:
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Corollary

By corollary, the height of a complete tree of n nodes is log! 𝑛 .
Again, the number of nodes increases as a power of 2.
n = 2h+1 – 1.  Rearranging to solve for h, we get:

35

2h+1 - 1 =	n
2h+1 =	n	+	1
h	+	1 =	log! 𝑛 + 1

h =	 log! 𝑛 + 1 - 1
h =	 log! 𝑛

For a complete tree (not perfect tree), we
need to take the ceiling, or floor.
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C data structure
/* should live in bst.h */
typedef struct bst_node *BST;

/* should live in bst.c */

struct bst_node {
KeyType key;

BST left;

BST right;

};

KeyType can be any comparable type (e.g. int, float, char, char *, etc).
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Inserting
1: function BST_Insert(BST T, KeyType key)
2: if T == NIL then
3: return new bst_node(key)
4: else
5: if key < T -> key then
6: T->left = BST_Insert(T->left, key)
7: else
8: T->right = BST_Insert(T->right, key)
9: end if
10: return T
11: end if
12: end function 38



Suggested reading

Chapter 12 is all about binary search trees.
We're looking at things in a different order to the textbook. Insertion 
into a BST is in section 12.3, but the textbook uses an iterative version 
of insertion.

39



Solutions
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Example 1

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Left subtree key ≮ parent node key
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Example 2

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Ordinal data with all TL < TR
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Example 3

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Ordinal data with all TL < TR
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Example 4

Does this tree satisfy the BST property? 
If not, why not?

Answers
• Yes
• No

Reason
Right subtree key 4 ≯ root node key
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Example 4 (corrected)
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Example 5

Does this tree satisfy the BST property? 
If not, why not?

Answers
• Yes
• No

Valid, but what do you notice about it?
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Proof

Assumption: 2h+1 -1 is true for all perfect trees. 
Inductive step: Prove formula holds for a tree of height h + 1. That is,
n = 2h+2 - 1.
Notice that in a binary tree, the number of extra nodes increases as a 
power of 2, at each height level increasing by 2h+1. Therefore:
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2h+2 - 1
=	2h+1+	2h+1 - 1
=	2∙2h+1 - 1
=	2h+1+1 - 1
=	2h+2 – 1															∎


