
Binary Search Trees 1
Lecture 12

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

2

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

3

Binary Trees

In COSC241, you were introduced to a data structure called a heap
where a tree node was usually bigger than all it's children. Most heaps
used are binary trees (maximum of 2 children).

4

Binary search trees

A binary search tree (BST) is a binary tree such that all children to the
left of a node are less than the node and all children to the right are
greater than the node:

5

Hash Tables

Hash tables are convenient when:
• Maximum size of table is known beforehand
• Actual size does not fluctuate too much or spend too much time at

a small fraction of the maximum size
• The emphasis is on insertion and retrieval.

6

BSTs or hash tables?

But are hash tables are not good when the app needs to:
• Perform many deletions.
• Perform traversals. For example, print out items in order of

increasing key values.
• Use dynamic storage, as max tablesize is unknown, or size fluctuates

a lot.
BSTs are good for very dynamic problems, or if traversals are needed.
But they come at a cost: insertion and deletion are O(log n) on average,
and O(n) in the worst case.

7

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

8

BST definition

A binary tree T is either
• The empty tree, or
• A root node containing a key field and data fields, a left subtree TL,

and a right subtree TR.

Leaves: Nodes with empty left and right subtrees.

9

BST Property

A binary tree T has the BST-property if:
• nodes in T have a key field of ordinal type, so they can be ordered

by <
• for each node N in T, N's key value is greater than all keys in its left

subtree TL and less than all keys in its right subtree TR, and TL and TR
are binary search trees.

10

BST

11

Key

TL TR

< <

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

12

Example 1

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

13

Example 2

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

15

Example 3

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

17

Example 4

Does this tree satisfy the BST property?
If not, why not?

Answers
• Yes
• No

19

Example 5

Does this tree satisfy the BST property?
If not, why not?

Answers
• Yes
• No

22

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

24

Definition: Height of a BST

The height of a BST is the number of edges from the root to the deepest
leaf.

25

Definition: Depth of a node

The depth of a node is the number of edges from that node to the root
of the tree.

26

Height vs Depth

27

Definition: Complete BST

A complete BST is a BST where each level, except possibly the last, is
completely filled, and all nodes are as far left as possible.

28

Definition: Fully complete BST

A fully complete BST, sometimes called a perfect BST, is a BST where
each level is completely filled.

29

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

30

Proof

Theorem: The number of nodes in a fully complete binary tree of
height h is n = 2h+1 - 1.
Lets prove this.
Base case: h = 0. Then, 20+1 – 1 = 2 - 1 = 1

31

Proof

Assumption:
Inductive step:

32

Corollary

By corollary, the height of a complete tree of n nodes is log! 𝑛 .
Again, the number of nodes increases as a power of 2.
n = 2h+1 – 1. Rearranging to solve for h, we get:

35

2h+1 - 1 =	n
2h+1 =	n	+	1
h	+	1 =	log! 𝑛 + 1

h =	 log! 𝑛 + 1 - 1
h =	 log! 𝑛

For a complete tree (not perfect tree), we
need to take the ceiling, or floor.

Today’s outline

1. Introduction
2. BST Definition
3. Examples
4. Definitions
5. Properties and proof
6. C and Insertion

36

C data structure
/* should live in bst.h */
typedef struct bst_node *BST;

/* should live in bst.c */

struct bst_node {
KeyType key;

BST left;

BST right;

};

KeyType can be any comparable type (e.g. int, float, char, char *, etc).
37

Inserting
1: function BST_Insert(BST T, KeyType key)
2: if T == NIL then
3: return new bst_node(key)
4: else
5: if key < T -> key then
6: T->left = BST_Insert(T->left, key)
7: else
8: T->right = BST_Insert(T->right, key)
9: end if
10: return T
11: end if
12: end function 38

Suggested reading

Chapter 12 is all about binary search trees.
We're looking at things in a different order to the textbook. Insertion
into a BST is in section 12.3, but the textbook uses an iterative version
of insertion.

39

Solutions

40

Example 1

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Left subtree key ≮ parent node key

41

Example 2

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Ordinal data with all TL < TR

42

Example 3

Does this tree satisfy the BST property? If not, why not?

Answers
• Yes
• No

Reason
Ordinal data with all TL < TR

43

Example 4

Does this tree satisfy the BST property?
If not, why not?

Answers
• Yes
• No

Reason
Right subtree key 4 ≯ root node key

44

Example 4 (corrected)

45

Example 5

Does this tree satisfy the BST property?
If not, why not?

Answers
• Yes
• No

Valid, but what do you notice about it?

46

Proof

Assumption: 2h+1 -1 is true for all perfect trees.
Inductive step: Prove formula holds for a tree of height h + 1. That is,
n = 2h+2 - 1.
Notice that in a binary tree, the number of extra nodes increases as a
power of 2, at each height level increasing by 2h+1. Therefore:

47

2h+2 - 1
=	2h+1+	2h+1 - 1
=	2∙2h+1 - 1
=	2h+1+1 - 1
=	2h+2 – 1															∎

