

Binary Search Trees 1 Lecture 12

COSC 242 – Algorithms and Data Structures

Today's outline

- 1. Introduction
- 2. BST Definition
- 3. Examples
- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

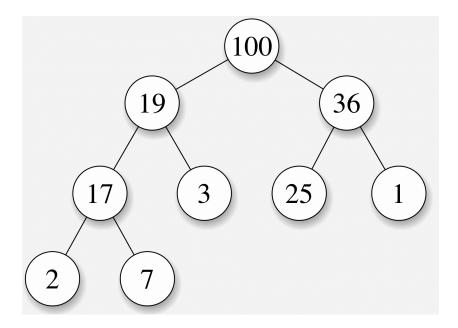
Today's outline

1. Introduction

- 2. BST Definition
- 3. Examples
- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

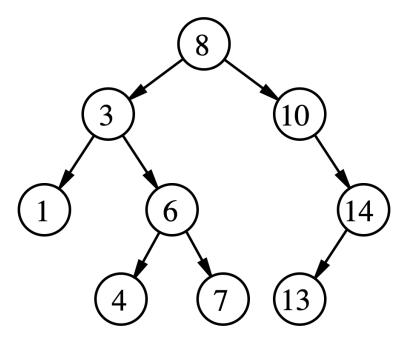
Binary Trees

In COSC241, you were introduced to a data structure called a heap where a tree node was usually bigger than all it's children. Most heaps used are binary trees (maximum of 2 children).



Binary search trees

A binary search tree (BST) is a binary tree such that all children to the left of a node are less than the node and all children to the right are greater than the node:



Hash Tables

Hash tables are convenient when:

- Maximum size of table is known beforehand
- Actual size does not fluctuate too much or spend too much time at a small fraction of the maximum size
- The emphasis is on insertion and retrieval.

BSTs or hash tables?

But are hash tables are not good when the app needs to:

- Perform many deletions.
- Perform traversals. For example, print out items in order of increasing key values.
- Use dynamic storage, as max tablesize is unknown, or size fluctuates a lot.

BSTs are good for very dynamic problems, or if traversals are needed.

But they come at a cost: insertion and deletion are $O(\log n)$ on average, and O(n) in the worst case.

Today's outline

- 1. Introduction
- 2. BST Definition
- 3. Examples
- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

BST definition

A binary tree T is either

- The empty tree, or
- A root node containing a key field and data fields, a left subtree T_L , and a right subtree T_R .

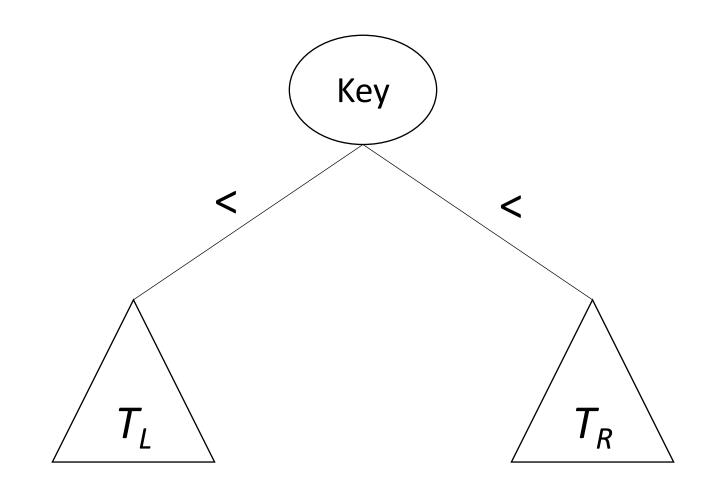
Leaves: Nodes with empty left and right subtrees.

BST Property

A binary tree T has the BST-property if:

- nodes in T have a key field of ordinal type, so they can be ordered by <
- for each node N in T, N's key value is greater than all keys in its left subtree T_L and less than all keys in its right subtree T_R , and T_L and T_R are binary search trees.

BST



11

Today's outline

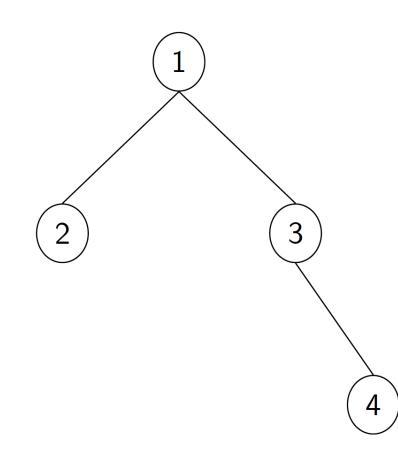
- 1. Introduction
- 2. BST Definition

3. Examples

- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

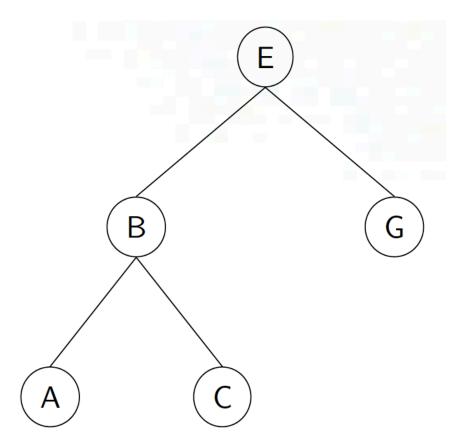
Does this tree satisfy the BST property? If not, why not?

- Yes
- No



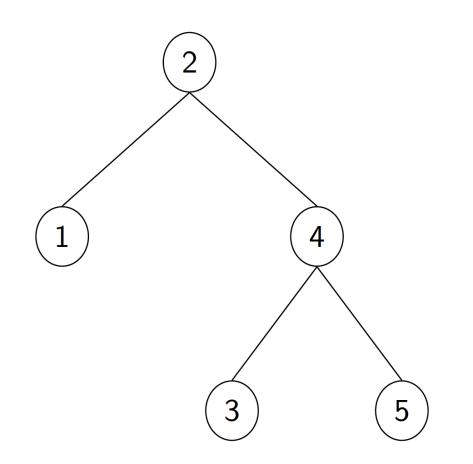
Does this tree satisfy the BST property? If not, why not?

- Yes
- No



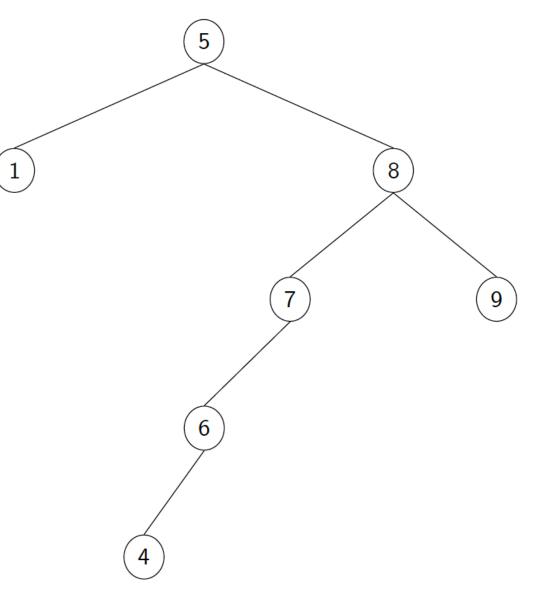
Does this tree satisfy the BST property? If not, why not?

- Yes
- No



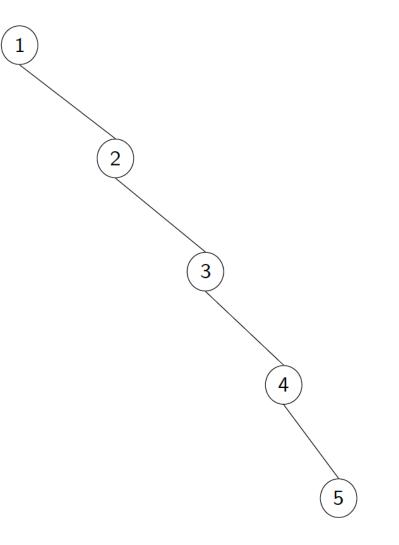
Does this tree satisfy the BST property? If not, why not?

- Yes
- No



Does this tree satisfy the BST property? If not, why not?

- Yes
- No



Today's outline

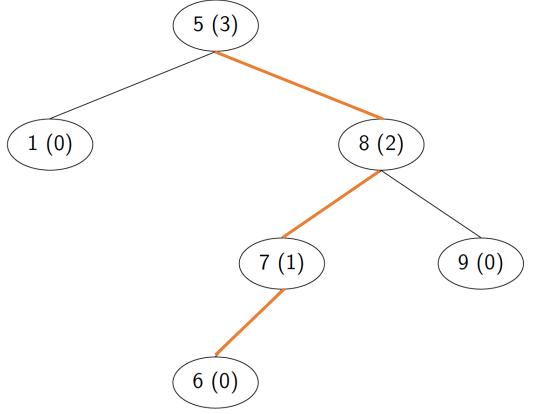
- 1. Introduction
- 2. BST Definition
- 3. Examples

4. Definitions

- 5. Properties and proof
- 6. C and Insertion

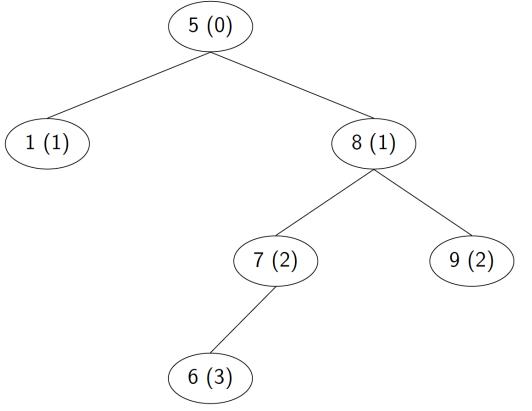
Definition: Height of a BST

The height of a BST is the number of edges from the root to the deepest leaf.

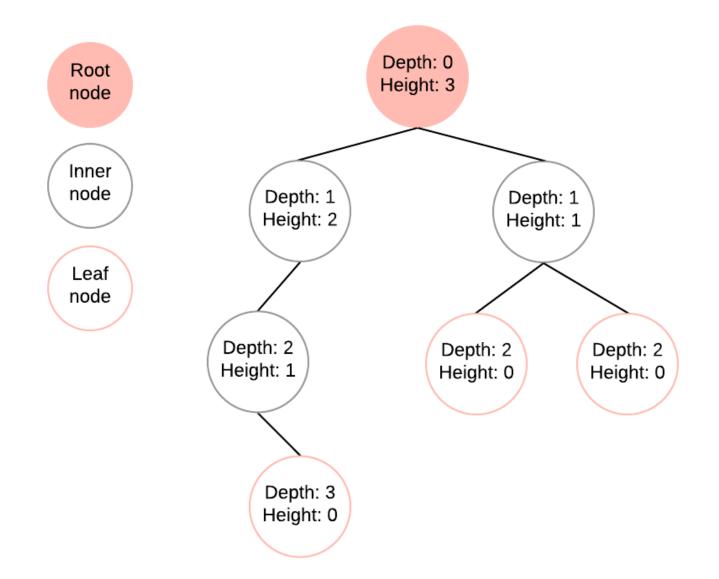


Definition: Depth of a node

The depth of a node is the number of edges from that node to the root of the tree.

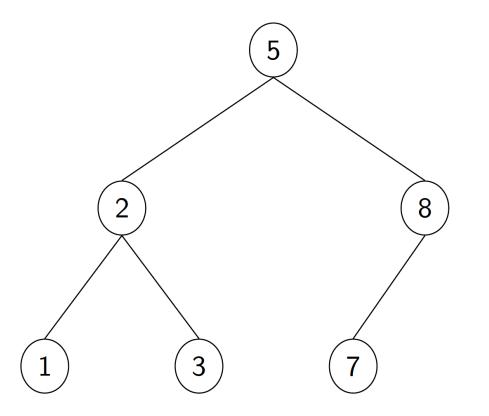


Height vs Depth



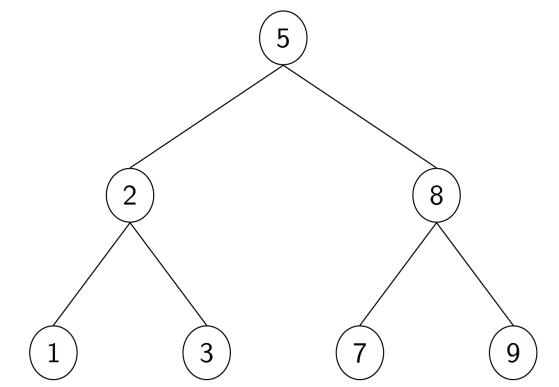
Definition: Complete BST

A **complete** BST is a BST where each level, except possibly the last, is completely filled, and all nodes are as <u>far left as possible</u>.



Definition: Fully complete BST

A **fully complete** BST, sometimes called a **perfect** BST, is a BST where each level is completely filled.



Today's outline

- 1. Introduction
- 2. BST Definition
- 3. Examples
- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

Proof

Theorem: The number of nodes in a fully complete binary tree of height h is $n = 2^{h+1} - 1$.

Lets prove this.

<u>Base case</u>: h = 0. Then, $2^{0+1} - 1 = 2 - 1 = 1$

Proof

Assumption:

Inductive step:

Corollary

By corollary, the height of a **complete** tree of *n* nodes is $\lfloor \log_2 n \rfloor$. Again, the number of nodes increases as a power of 2. $n = 2^{h+1} - 1$. Rearranging to solve for h, we get:

$$2^{h+1} - 1 = n$$

 $2^{h+1} = n + 1$
 $h + 1 = \log_2(n + 1)$
 $h = [\log_2(n + 1) - 1]$
 $h = [\log_2 n]$

For a complete tree (not perfect tree), we need to take the ceiling, or floor.

Today's outline

- 1. Introduction
- 2. BST Definition
- 3. Examples
- 4. Definitions
- 5. Properties and proof
- 6. C and Insertion

```
C data structure
/* should live in bst.h */
typedef struct bst_node *BST;
/* should live in bst.c */
struct bst node {
   KeyType key;
    BST left;
   BST right;
```

};

KeyType can be any comparable type (e.g. int, float, char, char *, etc).

Inserting

- 1: **function** BST_Insert(BST T, KeyType key)
- 2: if T == NIL then
- 3: return new bst_node(key)
- 4: else
- 5: **if** key < T -> key then
- 6: T->left = BST_Insert(T->left, key)
- 7: else
- 8: T->right = BST_Insert(T->right, key)

9: end if

- 10: return T
- 11: end if

12: end function

Suggested reading

Chapter 12 is all about binary search trees.

We're looking at things in a different order to the textbook. Insertion into a BST is in section 12.3, but the textbook uses an iterative version of insertion.

Solutions

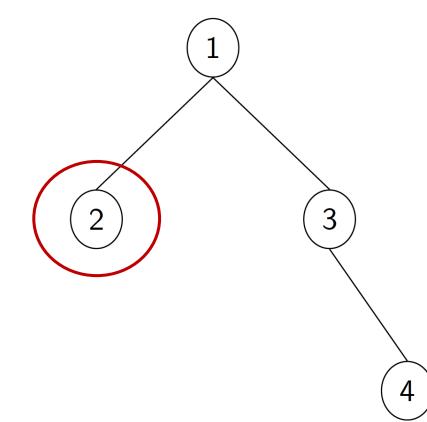
Does this tree satisfy the BST property? If not, why not?

Answers

- Yes
- No

Reason

Left subtree key *≮* parent node key



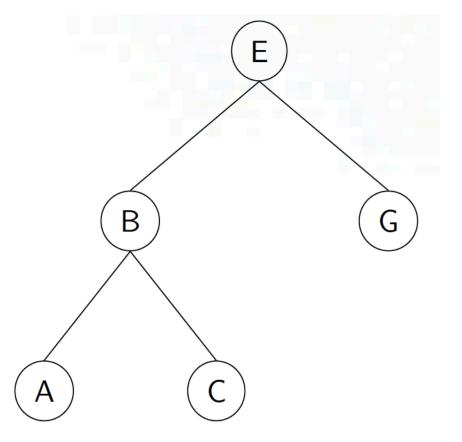
Does this tree satisfy the BST property? If not, why not?

Answers

- Yes
- No

Reason

Ordinal data with all $T_L < T_R$



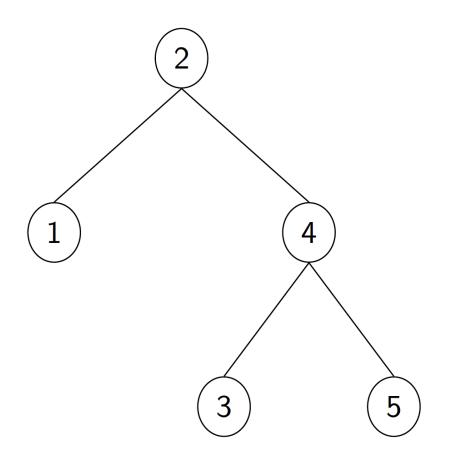
Does this tree satisfy the BST property? If not, why not?

Answers

- Yes
- No

Reason

Ordinal data with all $T_L < T_R$



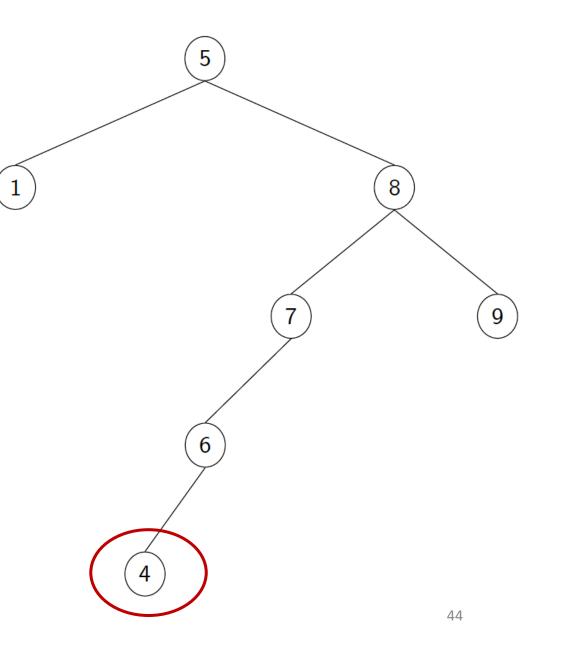
Does this tree satisfy the BST property? If not, why not?

Answers

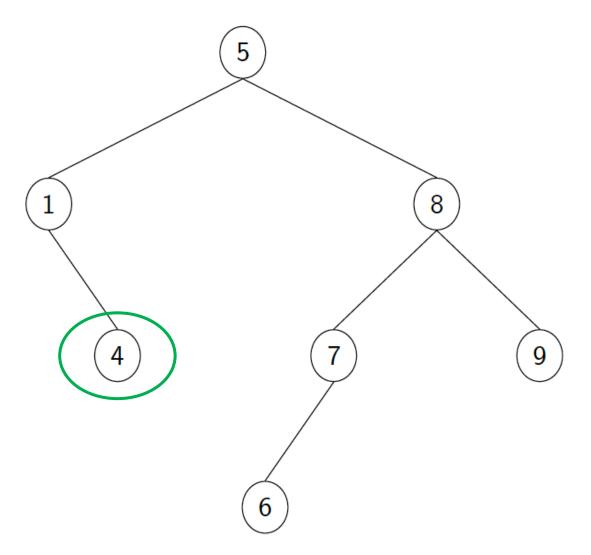
- Yes
- No

Reason

Right subtree key 4 \Rightarrow root node key



Example 4 (corrected)

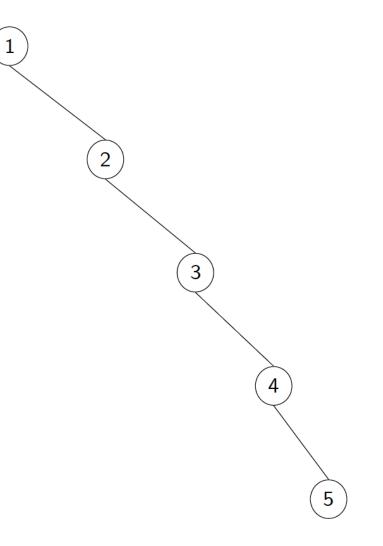


Does this tree satisfy the BST property? If not, why not?

Answers

- Yes
- No

Valid, but what do you notice about it?



<u>Assumption</u>: 2^{h+1} -1 is true for all perfect trees.

<u>Inductive step</u>: Prove formula holds for a tree of height h + 1. That is, $n = 2^{h+2} - 1$.

Notice that in a binary tree, the number of extra nodes increases as a power of 2, at each height level increasing by 2^{h+1}. Therefore:

$$2^{h+2} - 1$$

= 2^{h+1} + 2^{h+1} - 1
= 2 \cdot 2^{h+1} - 1
= 2^{h+1+1} - 1
= 2^{h+2} - 1