
Graphs 2
Lecture 20

COSC 242 – Algorithms and Data Structures

Today’s outline

1. DFS, BFS, stacks, and queues
2. Topological sort
3. Path finding

2

Today’s outline

1. DFS, BFS, stacks, and queues
2. Topological sort
3. Path finding

3

DFS, BFS, stacks, and queues

BFS keeps track of the vertices in the graph using a queue. BFS adds
new vertices (the children of the current vertices) to the back of a
queue.
DFS on the other hand, uses a stack. In the previous algorithm the stack
was implicit - we used the system stack, but we could just as well have
used an explicit stack (S in the algorithm on the next page).
But, as can be seen on the following pages, using an explicit stack often
results in more complicated code.

4

5

procedure DFS(G)
1: for each vertex 𝑢 ∈ 𝐺. 𝑉 // Initialise all vertices

2: u.colour = WHITE
3: u.π = NIL
4: time = NIL // Initialise time (global variable)
5: for each vertex 𝑢 ∈ 𝐺. 𝑉
6: if u.colour == WHITE
7: DFS-Visit(G, u) // Visit each white vertex in Graph

procedure DFS-Visit(G, u)
1: time = time + 1 // Increment global time value

2: u.d = time // Vertex discovered time

3: u.colour = GREY
4: for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each vertex v adjacent to vertex u

5: if v.colour == WHITE // if white, then it’s unexplored and we need to visit
6: v.π = u
7: DFS-Visit(G, v)
8: u.colour = BLACK // Explored all adjacent vertices, make self black
9: time = time + 1 // Increment time (global)
10: u.f = time // Set finish time for self

Recursive DFS

Recursive call

6

procedure DFS-Visit(G, u)
1: time = time + 1;
2: u.d = time
3: u.colour = GREY
4: Push(S, u)
5: while not Empty(S)
6: u = Top(S) // Get top element without removing from stack
7: push = false; // Boolean tracks if we ’pushed
8: for each 𝑣 ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each vertex v adjacent to vertex u

9: if v.colour == WHITE
10: v.π = u
11: push = true // Pushed onto the stack
12: break
13: if push // Adjacent white vertices to be explored?
14: v.colour = GREY; time = time + 1; v.d = time; Push(S, v)
15: else // All adjacent vertices explored, colour self black
16: u = Pop(S); u.colour = BLACK; time = time +1; u.f = time
end procedure

DFS with explicit stack

Today’s outline

1. DFS, BFS, stacks, and queues
2. Topological sort
3. Path finding

7

Application of DFS: Topological sort

A Directed Acyclic Graph, or DAG, is a directed graph with no cycles*.
A DAG is used to model a project’s dependencies.
A topological sort turns a DAG into a horizontal list, where later items
depend on earlier items.
We can produce a topological sort using DFS – as each vertex is finished
(coloured black and u.f is set), add it to the front of a list.

8

* A cycle is a non-empty path where the first and last vertices are the only repeated vertices.

Topological sort

9

procedure Topological-Sort(G)
1: call DFS(G) to compute finishing times v.f for each vertex v
2: as each vertex is finished, insert onto front of a linked list
3: return linked list

Example: Topological sort

10

Example: Topological sort

11

DAG following DFS with discover/finish times

Example: Topological sort

12

DAG following DFS with discover/finish times

List sorted by decreasing order of finish times. Edges retained.

Class challenge: Topological sort

13

Try it yourself. Start at any vertex. Your discover/finish times may be different,
but you will arrive at the same correct dependency output.

Why does this work?

The key insight is to recognise what finish times tell us about a vertex. A
vertex gets marked finished when it has no more adjacent vertices to
explore.
Therefore, if we arrived at that vertex by way of an edge, it must be at
the end of the dependency chain. These vertices will be marked with
earlier finish times relative to their ancestors.
Similarly, a vertex with adjacent vertices will be finished later, as we
need to explore these potentially long paths. These vertices will be
marked with later finish times relative to their descendants.

14

Today’s outline

1. DFS, BFS, stacks, and queues
2. Topological sort
3. Path finding

15

Application of DFS: Path Finding

Maps are often represented as graphs. Every location on the graph is a
vertex, and edges represent the fact that you can get from vertex a to
vertex b in a single ”step”.
This is how Google Maps represents locations on the map. Google
Maps probably has many billions of locations (perhaps trillions).

16

Application of DFS: Path Finding

You can use DFS to find a path between two locations:
1. call DFS starting at the destination
2. build the DFS tree as you go,
3. halt if you reach the required source (which will be a leaf in the

tree). Note, there may be no path.
4. then backtrack up the tree from the source to the leaf, and that

gives a path between the two locations.
This path may not be the shortest one - we'll look at shortest path
algorithms in a later lecture.

17

Path finding: Dunedin to Oamaru

18

Path finding: Dunedin to Oamaru

19

Oamaru

Kurow

Omarama

Cromwell

Wanaka Queenstown

Alexandra

Milton

Balclutha

Gore

Dunedin

Class challenge: Find path from Queenstown
to Middlemarch

20

Suggested reading

Depth first search and topological search are discussed in sections 22.3
and 22.4 of the textbook, respectively.

21

Solutions

22

Class challenge: Topological sort

23

Try it yourself. Start at any vertex. Your discover/finish times may be different,
but you will arrive at the same correct dependency output.

Image attributions

24

This Photo by Unknown Author is licensed under CC BY

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

http://2016.igem.org/Team:Kyoto/Integrated_Practices
https://creativecommons.org/licenses/by/3.0/

