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Greedy algorithms

Dijkstra's algorithm and Prim's algorithm are both examples of greedy 
algorithms.
A greedy algorithm tries to solve an optimisation problem by making a 
sequence of choices. 
At each decision point, it chooses the locally optimal choice in the hope 
that it will lead to a globally optimal solution. This is such a simple 
approach that it is what one usually tries first.
Greedy algorithms do not always yield optimal solutions, but for many 
problems they do.
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Greedy vs dynamic programming

The choices made by greedy algorithms may depend on choices already 
made, but it cannot depend on the outcome of future unmade choices.
This contrasts with dynamic programming, which we will see in L23-24, 
which solves subproblems before making the first choice. In contrast, a 
greedy algorithm makes a choice before solving any subproblems.
Thus, dynamic programming can be seen as bottom-up, making a 
choice after assembling smaller solutions, whereas greedy 
programming is top-down, making one greedy choice after another, 
reducing each given problem instance to a smaller one.
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Greedy algorithms

In both Dijkstra's and Prim's algorithms, a priority queue is used to 
extract the next node to visit.
Priority queues are essential data structures for many greedy 
algorithms.
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Knapsack problem

Consider now a totally different kind of optimisation problem.
A thief robbing a store has n items to choose from. These items belong 
to a set S = {s1, s2, ..., sn}. 
The i th item si is worth vi dollars, and has a weight wi, where vi and wi
are integers.
The thief wants to take as valuable load as possible. But the thief can 
only carry a maximum weight of wmax . 
Which items should the thief take that will maximise the load value?
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0-1 and Fractional Knapsack problems

In the 0-1 knapsack problem, the thief can either take an item, or leave 
the item. It is a binary choice, and hence the name 0-1: the thief 
cannot take a fractional amount of an item.
In the Fractional knapsack problem, the scenario is the same, but the 
thief can take fractions of items, rather than making a binary (0-1) 
choice.
If it helps, you can think of the 0-1 problems as involving gold bars. 
Whereas in the fractional problem, it involves bags of gold dust. 
You can’t take a fraction of a gold bar, but you can take a fraction of a 
bag of gold dust.
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The thief’s max carry weight wmax = 50 kg. The thief can choose from 
the following items:
1. v1 = $60, w1 = 10 kg. 
2. v2 = $100, w1 = 20 kg. 
3. v3 = $120, w1 = 30 kg. 

Notice that the total weight of all three 
items is 60 kg, exceeding wmax.

Knapsack setup
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Fractional knapsack greedy approach

We will attempt a greedy approach for the fractional problem. What 
does that mean? We will prioritise items by their value per kg.
We’ll call this an item’s priority (or profit), pi . This is a normalised value 
and with it we can compare items on a common scale:
1. v1 = $60, w1 = 10 kg, p1 = ⁄!"

#" = $6/𝑘𝑔
2. v2 = $100, w1 = 20 kg, p2 = ⁄#""

$" = $5/𝑘𝑔
3. v3 = $120, w1 = 30 kg, p3 = ⁄#$"

%" = $4/𝑘𝑔

Greedy solution
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Fractional knapsack greedy algorithm
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procedure FracKnap(S, V, W, wmax) // Items, Values, Weights, max weight
1: Initialise priority queue Q // Initialise empty
2: for each 𝑠! ∈ 𝑆
3: 𝑝! = ⁄"! #! // pi is value to prioritise
4: Q.Enqueue(si) using pi as priority // Max-priority queue
5: current_weight = 0 // Thief’s current weight
6: knapsack =  Ø
7: while current_weight < wmax // Keep taking while we can carry more
8: 𝑠$ = Q.Dequeue() // Get item with max profit
9: 𝑥$ = min(𝑤$, 𝑤%&' - current_weight) // How much of item’s weight can we take?
10: current_weight = current_weight + 𝑥$
11: knapsack = knapsack U { ⁄'" #" ∗ 𝑠$} // Add weight fraction of item sk
end procedure
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0-1 knapsack greedy approach

We will now attempt to solve the 0-1 problem. We will again use the 
greedy approach. Recall that in this version we can either take (1) or 
leave (0) an item; it is a binary choice.
What solution is given by the greedy approach?
What is the optimal solution?
Items
1. v1 = $60, w1 = 10 kg. 
2. v2 = $100, w1 = 20 kg. 
3. v3 = $120, w1 = 30 kg. 
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0-1 knapsack solution

a) The optimal subset includes items 2 and 3

b) The greedy approach. We can see that this 
approach yields a suboptimal solution. 

c) In fact, any solution that involves taking 
item 1 is suboptimal.
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Class challenge

What about this scenario?
Wmax = 50 kg
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Metric Items
Weight 5 3 10 20 22 17 30 25 15 31
Value 40 23 60 100 102 72 120 45 20 31
Profit 8 7.7 6 5 4.6 4.2 4 1.8 1.3 1.0



Solving the 0-1 knapsack problem

Given: a Set S = {s1, s2, ..., sn}, where each item si has a positive benefit 
(or value) vi and has a weight (or cost) wi. Take vi and wi to be integers. 
A maximum total weight of wmax.
Required: to choose a subset of S such that the total weight does not 
exceed wmax and the sum of the values vi is maximal.
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Solving the 0-1 knapsack problem

Let V be a 2D array storing the maximum value possible considering the 
first k items in S (call those k items, Sk), and maximum total weight w. 
We’ll come back to this array in a few slides…
If k ∈ Sk and we remove k from Sk (call it Sk-1), then the resulting set 
must be the optimum for the problem with a maximum total weight of 
w - wk. Why?
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Optimal substructure

A requirement of dynamic programming and greedy approaches is that 
the problem have the property known as optimal substructure.
A problem exhibits optimal substructure if an optimal solution contains 
within it optimal solutions to subproblems.
Recall: Dijkstra’s algorithm relied on this property. From L21-S10: 
“A shortest path algorithm relies on the property that a shortest path 
between two vertices contains other shortest paths within it.” 
That is, the shortest paths problem exhibited optimal substructure.
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Optimal substructure in Knapsack

Both knapsack problems exhibit optimal substructure. Therefore, we 
can consider greedy and dynamic approaches to these problems.
The fractional knapsack is best solved by a greedy approach.
The 0-1 approach is best solved by a dynamic programming approach. 
For the 0-1 problem, consider the most valuable load that weights at 
most W kg. If we remove item j, the remaining load must be the most 
valuable load weighting at most W – wj that the thief can take from the 
n – 1 original items excluding item j.
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Recursive non-greedy solution
We are now left with the following observations:

1) If there are no items in our set S0, then the maximum value is 0.
2) If there is no space in our knapsack, then the maximum value is 0
3) If the kth item can't fit in the knapsack, then the maximum is the same as 

the maximum for k – 1 items.
4) Otherwise, the maximum is either:

• the maximum without the kth item in the optimal set, in which case 
we have a new problem with k – 1 items and maximum weight w.

• the maximum with the kth item in the optimal set, in which case we 
have a new problem with k – 1 items and maximum weight w - wk.
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Recursive non-greedy solution

So we can define our optimum V[k, w] recursively as:
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𝑉 0,𝑤 = 0
𝑉 𝑘, 0 = 0
𝑉 𝑘,𝑤 = 𝑉 𝑘 − 1,𝑤 𝑖𝑓 𝑤2 > 𝑤
𝑉 𝑘,𝑤 = max(𝑉 𝑘 − 1,𝑤 , 𝑣2 + 𝑉 𝑘 − 1,𝑤 − 𝑤2 )

1) No items

2) No space

3) kth item can’t fit

4) Max of:
a) Without kth
b) With kth
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Example: Visualising our item array

Before we implement the pseudocode, lets return to the 2D array. 
Every dynamic programming algorithm involves such an array.
Lets choose a simple 0-1 knapsack example to visualise in our array.
A thief can choose from three items:
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Television
$300
4 kg

Laptop
$200
3 kg

Jewellery
$150
1 kg

wmax = 4kg



Example: Visualising our item array

Here’s our 2D array for this problem. Each row represents the current 
best guess for max value in the knapsack. For each row, you can only 
consider the current item, or ones prior to it. 

27

1 2 3 4

Jewellery

Television

Laptop

Knapsack max weight from 1 to 4 kg

One row for 
each item for 
thief to choose 
from

w

k



Example: Visualising our item array

Lets start with the jewellery row. For each cell we make our
binary choice: take the item (1) or leave it (0). We must
adhere to the weight limit set by the column.
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1 2 3 4

Jewellery

Television

Laptop

TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg

Remember: Each row represents the current best guess for max value in the knapsack. 



Example: Visualising our item array

Lets start with the jewellery row. For each cell we make our
binary choice: take the item (1) or leave it (0). We must
adhere to the weight limit set by the column.
After the jewellery row, the thief’s best guess to steal: 
jewellery for $150.
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television

Laptop



Example: Visualising our item array

Lets do the television row next. Now, in [2,1] we have two
items we can take: Jewellery or Television. But we’re still
weight limited to 1kg.
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television

Laptop

Current max for 1kg knapsack

New max for 1kg knapsack



Example: Visualising our item array

Since the television weights 4 kg, our best option is to still 
steal the jewellery. In fact, that remains our choice until [2,4], 
at which point it’s optimal to steal the TV.
We’ve now updated our estimate. With a 4kg knapsack, the
thief can steal at least $300.
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop



Example: Visualising our item array

Lets finish with the laptop row. We’ll do the same thing, until
the final cell in [3,4], the important part.
Our current best guess for 4kg is $300. We could take the 
laptop instead, but that’s only worth $200. 
But notice, if we take the laptop, we still have 1kg of space…
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop $150 (J) $150 (J) $200 (L)



Example: Visualising our item array

So our real choice is:
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop $150 (J) $150 (J) $200 (L)

($300)    vs    ($200 + 1 kg )
TV                    Laptop       ?



Example: Visualising our item array

What was our previous best guess for 1kg? The jewellery!
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop $150 (J) $150 (J) $200 (L) $350 (J & L)

($300)    vs    ($200 + $150)
TV                    Laptop    Jewellery



Example: Visualising our item array

Here’s the formula for calculating the value at each cell,
including our all important final cell:
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop $200 $150 (J) $150 (J) $200 (L) $350 (J & L)

𝑉 𝑘,𝑤 = max(𝑉 𝑘 − 1,𝑤 , 𝑣2 + 𝑉 𝑘 − 1,𝑤 − 𝑤2 )
($300) vs    ($200 + $150)

TV Laptop Jewellery



Example: Visualising our item array

Put another way, our formula means:
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TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

wmax = 4kg
1 2 3 4

Jewellery $150 (J) $150 (J) $150 (J) $150 (J)

Television $150 (J) $150 (J) $150 (J) $300 (TV)

Laptop $200 $150 (J) $150 (J) $200 (L) $350 (J & L)

𝑐𝑒𝑙𝑙 𝑖, 𝑗 = 𝑉 𝑘,𝑤 = max ?1.2.

Previous max

Previous max value at V[k-1, w]
Value of current item + V[k-1, w-wk]

(value remaining space)
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Refresh: Recursive non-greedy solution

So we can define our optimum V[k, w] recursively as:
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𝑉 0,𝑤 = 0
𝑉 𝑘, 0 = 0
𝑉 𝑘,𝑤 = 𝑉 𝑘 − 1,𝑤 𝑖𝑓 𝑤2 > 𝑤
𝑉 𝑘,𝑤 = max(𝑉 𝑘 − 1,𝑤 , 𝑣2 + 𝑉 𝑘 − 1,𝑤 − 𝑤2 )

1) No items

2) No space

3) kth item can’t fit

4) Max of:
a) Without kth
b) With kth
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procedure RecursiveKnapsack(k, W, V, wmax) // Knap item, Weights, Values, max weight
1: if k==0 or wmax ≤ 0 return 0, Ø // No items OR no space (1 & 2)
2: if W[k]>wmax // Can’t fit k into knapsack (3)
3: return RecursiveKnapsack(k-1,W,V,wmax)
4: // Check the maximum value (v1) without item k (4a)
5: v1, items_not = RecursiveKnapsack(k-1,W,V,wmax)
6: // Check the maximum value (v2) with item k (4b)

7: v2, items_do = RecursiveKnapsack(k-1,W,V,wmax-W[k])
8: v2 = v2 + V[k] // Add value of current item
9: items_do.add(k) // Add item k to list of take items
10: if v2 > v1
11: return v2, items_do // Do use item k
11: else
12: return v1, items_not // Don’t use item k
end procedure

Recursive top-down implementation (Brute force )



Running our example

With our example, we would call our procedure as follow:
k = 3

W = [1, 4, 3]

V = [150, 300, 200]

wmax = 4
RecursiveKnapsack(k=3, W=[1,4,3], V=[150,300,200], wmax=4) 
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wmax = 4kg

TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg



Running our example
Lets think about our recursive code for a moment. When drawing out 
recursive code, it’s easy to make an error, so it’s helpful to start out 
knowing what we should get back with an easy example.
In our first outer call to RecursiveKnapsack, Line 5 is going to return the 
maximum value and set of items without item k = 3, our laptop. 
Naturally, if we can’t take the laptop, this must mean the maximal set has 
to be the TV. So we should get: v1=$300, not = {2}.
Then Lines 7-9 is going to return the maximum value with item k = 3, our laptop.
On Line 7 we’re looking for max value with only 1 kg of space, v2 = $150, do = {1}.
With our remaining 3 kg of space, on Lines 8-9 will add k=3, our laptop. So the 
solution will return: v2 = 350, do = {1, 3}.
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wmax = 4kg

TV
$300
4 kg

Jewellery
$150
1 kg

Laptop
$200
3 kg

You’ll get to practise this in Tutorial Week 11-12.
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Recursive knapsack

What’s the time complexity of RecursiveKnapsack? It turns out to 
be exponential: O(2n). Showing this is left as a tutorial exercise. 
In RecursiveKnapsack, W and V don't change, so the only things 
that change in different recursive calls are k and wmax. k can be any 
integer from 1 to n and wmax can be any integer from 1 to wmax. So we 
should be able to produce a solution in O(n*wmax).
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Time-memory trade-off

The reason why RecursiveKnapsack is so expensive is because it 
recomputes the same values over and over again. 
If we could store those values when they're computed and then 
retrieve them when needed, we could save ourselves a lot of 
computation.
Dynamic programming uses additional memory to save computation 
time, by saving earlier subproblem results.
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Time-memory trade-off

Doing this can have a dramatic effect, turning an exponential problem 
into a polynomial one.
There are two general approaches: the first is top-down with 
memoisation. In this approach we retain a recursive structure, but save 
the result of each subproblem in an array or table.
The other is a bottom-up method, that uses iteration rather than 
recursion. It again stores already-solved problems in an array.
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Top-down memoisation vs bottom-up

Both approaches yield algorithms with the same asymptotic running 
time.
However the bottom-up approach has much better constant factors, 
since there is less overhead for procedure calls. 
As we know, each time we call a recursive function new values have to 
get added to the stack, as it requires allocation of a new stack frame. 
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https://en.wikipedia.org/wiki/Call_stack
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1: initialise global memo[n, wmax] as 2D array, all cells set to -1
procedure KnapMemo(k, W, V, wmax) // item, Weights, Values, max weight
2: if k==0 or wmax ≤ 0 return 0, Ø // No items OR no space (1 & 2)
3: if memo[k,wmax] != -1 return memo[k,wmax] // Shortcut using memo
4: if W[k]> wmax
5: memo[k,wmax] = KnapMemo(k-1,W,V,wmax) // Same as RK L2-3, but cache it
6: else
7: v1, items_not = KnapMemo(k-1,W,V,wmax) // Same as RK L5
8: v2, items_do = KnapMemo(k-1,W,V,wmax-W[k]) // Same as RK L7
9: v2 = v2 + V[k]
10: items_do.add(k)
11: if v2 > v1
12: memo[k,wmax] = v2, items_do // Do use item k
13: else
14: memo[k,wmax] = v1, items_not // Don’t use item k
15: return memo[k,wmax]
end procedure

Memoised top-down implementation
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Bottom up method
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Suggested reading

Greedy algorithms are discussed in Section 16. The introduction and 
Section 16.2 are particularly relevant.
The knapsack problem isn’t really discussed in the textbook, though 
there is a bit at the end of Section 16.2
Dynamic programming is discussed in Section 15. The introduction and 
Section 15.3 are relevant.
Optimal substructure is discussed in Sections 15.3 and 16.2.
Grokking Algorithms, 2016, A. Y. Bhargava has a great illustration of 
dynamic programming, which inspired today’s example.
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