
P and NP
Lecture 25

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

2

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

3

Hard problems

In COSC242, pretty much all of the problems and algorithms we've
covered so far have been solved in a polynomial number of steps. For
example, O(n2).
That is, we have primarily been concerned with how easy a problem is.
We have focused on the upper bounds of problem complexity using
Big-Oh notation.

4

Hard problems

Are there problems that are harder than polynomial ones?
Yes, there are many problems that are definitely harder. For example:
• listing all possible subsets of a given set
• determining if there is a winning strategy in generalised games

(chess, go etc) requires exponential time. Generalised games have
arbitrary sized boards.

5

Easy or Hard?

There are also a whole class of problems for which we don't know if
any efficient algorithms exist. Here are some examples:
• finding a Hamilton cycle in a graph
• factoring an integer into a product of primes
• finding a tour of minimum distance that visits a set of cities once

only. Called the travelling salesman problem
• 0-1 knapsack problem (decision problem form) and bin-packing
• timetabling

6

Easy or Hard

To date, no algorithms that generate a solution to these problems in
polynomial time on a deterministic machine have been identified.
These problems fall into a broad category known as “NP”, or “Non-
deterministic Polynomial time”.
Understanding the properties of these problems is of interest to
researchers in the field of computational complexity theory.
In these NP problems, we are concerned with how hard they are, and
seek to establish their lower-bound complexity (Big omega, Ω(n)).

7

https://en.wikipedia.org/wiki/Computational_complexity_theory

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

8

Hamilton path and cycle problems

Let G be an undirected graph. A Hamilton path in G is a sequence of
adjacent vertices and distinct edges in which every vertex of the graph
appears exactly once.
Relatedly, a Hamilton cycle in G inherits the same requirements, except
that the first and last vertices are the same.

9

Hamilton Path

10

A B

C D

E F

G H

I J

Hamilton Path

11

A B

C D

E F

G H

I J

Hamilton Path

12

A B

C D

E F

G H

I J

Come up with another Hamilton Path

Hamilton Cycle

13

A B

C D

E

Hamilton Cycle

14

A B

C D

E

A B

C D

E

Solving the Hamilton Cycle Problem

The simplest algorithm to solve the HCP is a brute force algorithm:
1. list every permutation of the n vertices in G
2. for each permutation, check whether G has edges connecting the

neighbouring vertices.

15

Solving the Hamilton Cycle Problem

The simplest algorithm to solve the HCP is a brute force algorithm:
1. list every permutation of the n vertices in G
2. for each permutation, check whether G has edges connecting the

neighbouring vertices.

Things to consider
How many permutations of vertices are there?
What is the complexity of the check procedure in step 2?
What is the complexity of this algorithm?

16

Hamilton cycle problem

Lets try the brute force algorithm on a simpler graph:
We have complete graph K, with n edges. Here our graph is K4.
Lets say we choose A. We can now choose from n-1 edges. That is, 3
edges. After that, we can choose from only n-2 edges, then n-3.
E.g.,: starting at A, we could have:
{A, B, C, D}, {A, B, D, C}, {A, C, B, D}, {A, C, D, B}, {A, D, B, C}, {A, D, C, B}.
So, just starting from A we have 6 possible permutations. That is, (n-1)!.
Since we have 4 starting positions, that means we have n!

17

A B

C D

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

18

The classes P and NP

P is the class of all problems solvable by algorithms that are O(nk). That
is, problems that are polynomial.
NP is the class of problems for which a proposed solution is verifiable in
polynomial time.
You might think that NP stands for “not polynomial”, but it doesn't. It
actually stands for non-deterministic polynomial.

19

The classes P and NP

What does non-deterministic mean? A non-deterministic algorithm is
one that gives different outputs on different runs, when given the same
inputs.
This is in contrast to a deterministic algorithm that always gives the
same output on the same input. In COSC242, we have only looked at
deterministic algorithms.
These algorithms can be viewed as random decision algorithms. They
attempt to “guess” a solution by making random choices.
Why? Because we don’t have a known deterministic solution.

20

Sudoku – An example of NP

21

Rules
All rows and columns must use numbers 1-
9. Each 3x3 grid must also only use
numbers 1-9

Verify a solution
Easy! We can do this in polynomial time.
We just check each row and column, and
ensure that each only contains each
number only once.

Sudoku – An example of NP

22

Generate a solution?
1. Guess a solution.
2. Check if it satisfies the rules.

There is no deterministic algorithm for
solving soduku. This problem NP-complete.

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

23

P and NP

We know:
• 𝑃 ⊆ 𝑁𝑃
• 𝐻𝐶𝑃 ∈ 𝑁𝑃

24

P and NP

We know:
• 𝑃 ⊆ 𝑁𝑃
• 𝐻𝐶𝑃 ∈ 𝑁𝑃

What about?
• is 𝐻𝐶𝑃 ∈ 𝑃?
• is 𝑃 ⊂ 𝑁𝑃?
• Is 𝑃 = 𝑁𝑃?

25

Easy to see. If a problem is solvable
in polynomial time, then its
solutions are also verifiable in
polynomial time, just by simply
solving the problem.

HCP and P

How could we show that 𝐻𝐶𝑃 ∈ 𝑃?
Just provide an algorithm that solves HCP in polynomial time.
No-one has been able to do that yet, so perhaps 𝐻𝐶𝑃 ∉ 𝑃
How could we show that 𝐻𝐶𝑃 ∉ 𝑃?

26

HCP and P

How could we show that 𝐻𝐶𝑃 ∈ 𝑃?
Just provide an algorithm that solves HCP in polynomial time.
No-one has been able to do that yet, so perhaps 𝐻𝐶𝑃 ∉ 𝑃
How could we show that 𝐻𝐶𝑃 ∉ 𝑃?
We would have to show that no such algorithm exists that could run in
polynomial time. This is much harder to prove, and no-one has been
able to prove this either.
In fact, it is one of the Millenium Prize problems worth US$1,000,000 if
you can solve it.

27

NP-Complete problems

HCP is one of several problems that have been shown to be NP-
complete.
A problem X is 𝑁𝑃-complete if 𝑋 ∈ 𝑁𝑃 and every other problem in 𝑁𝑃
can be efficiently converted to an example of problem X, so that an
algorithm solving X can easily be modified to solve every other problem
in 𝑁𝑃.
Now imagine if we could find an algorithm of polynomial complexity to
solve HCP.

28

NP-Complete problems

Then every problem in 𝑁𝑃 can be solved by this algorithm (after
modifying it), and so every problem in 𝑁𝑃 would have a polynomial
time solution. Thus it would follow that 𝑃 = 𝑁𝑃.
But all problems in 𝑁𝑃, like HCP, have stubbornly resisted all efforts to
find polynomial time solutions.
By now, everyone strongly suspects that HCP and the other 𝑁𝑃 -
complete problems are too hard to be solved by algorithms that are of
less than exponential complexity.

29

Today’s outline

1. Hard problems
2. Hamilton cycle problem
3. Problem classes
4. NP-Complete
5. Travelling Salesman problem

30

Travelling Salesman Problem (TSP)

Given a set of cities, a salesman must travel
to each city once, starting and ending at
the same city. Which route is the shortest?
E.g: starting at a, what is the shortest tour?

31

Brute Force

Brute force uses essentially the same algorithm as HCP:
1. Generate all possible tours (Hamilton cycles)
2. Return the solution with shortest distance.
Complexity? It’s O(n!)

32

Dynamic programming

We can do better by using a dynamic programming approach. Let
G=(V,E), and consider a start node s. Also, let's define the minimum
path between two nodes starting at a and finishing at b and including
all nodes in the set N as 𝑚!"#$ 𝐺, 𝑎, 𝑏, 𝑁
The minimum tour of G, starting at a and finishing at b, consists of the
following recurrence:

𝑚!"#$ 𝐺, 𝑎, 𝑏, 𝑁 = min([𝑑 𝑎, 𝑛 + 𝑚!"#$ 𝐺, 𝑎, 𝑏, 𝑁 − 𝑎]
If we start and finish at s, we need to solve 𝑚!"#$ 𝐺, 𝑎, 𝑏, 𝑉 − 𝑠 . A
naive recursive implementation will give us the |V|! solution. If we
memoise though, we can do a bit better.

33

𝑛 ∈ 𝑁 − 𝑎

Dynamic programming

How big does our memo array need to be? Here's the recurrence again:

𝑚&'() 𝐺, 𝑎, 𝑏, 𝑁 = min([𝑑 𝑎, 𝑛 + 𝑚&'() 𝐺, 𝑎, 𝑏, 𝑁 − 𝑎]

The only things that change in the recurrence are the start node and the set of
nodes to tour through. At the first level of recursion, we look at all subsets of size
|V| - 1, then at the second level all subsets of size |V| - 2 etc.

The memo array needs to be big enough to t all possible subsets of the nodes in
our graph, and that is 2|v|.

The complexity of the dynamic programming solution is actually |V|22|v|. Well,
that’s better than factorial, but it's still pretty bad. No algorithm faster than O(2|v|)
is known to exist.

34

𝑛 ∈ 𝑁 − 𝑎

Suggested reading

Section 34 discusses the problem of NP-completeness and talks about
the classes P and NP. The textbook delves into the topic in rather more
detail than we do here, so if you're interested, then that's a good place
to look.

There are several excellent books on the topic. Two such books are:
• Computers and Intractability, M.R. Garey & D.S. Johnson, 1979 [1].
• The nature of computation, C. Moore & S. Mertens, 2011 [2].

35

https://en.wikipedia.org/wiki/Computers_and_Intractability
http://nature-of-computation.org/

Image attributions

36

This Photo by Tim Stellmach is licensed under CC0

This Photo by Tim Stellmach is licensed under CC BY-SA 3.0

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

https://upload.wikimedia.org/wikipedia/commons/e/e0/Sudoku_Puzzle_by_L2G-20050714_standardized_layout.svg
https://en.wikipedia.org/wiki/en:Creative_Commons
https://commons.wikimedia.org/wiki/File:Sudoku_Puzzle_by_L2G-20050714_solution_standardized_layout.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en

