
Review and Exam prep
Lecture 26

COSC 242 – Algorithms and Data Structures

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

2

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

3

Exam details

• 3 hours in duration
• Worth 60% of final grade
• Written exam
• Closed book, no notes, no calculators
• No questions involve writing or reading code
• Includes two appendices

1) RBT Insertion Fix-up code from L16, SL15 (comments removed)
2) RBT Deletion Fix-up code from L17, SL18 (comments removed)

4

Exam suggestions

• If you have a final answer, circle or label it so you make it very clear.
• Bring an eraser or white-out.
• Use the separate rough work books. Cross our any rough working in

your solution book.
• Put your student ID on your exam where indicated. It sounds silly, but

every year at least one person forgets to do this.

5

Exam suggestions

• Attempt every question. Markers want to award as many marks as
possible. If you leave a blank page, they can only ever award a zero,
you leave them no “wriggle room”. If you’re close to a pass, then
every mark counts.

• There is zero tolerance for “tricks”. E.g., don’t provide two different
answers, leaving it ambiguous which is your “final” answer. It will be
assumed you don’t know the answer and marked accordingly.

6

Exam strategies
Strategy 1 – A greedy approach to marks
• Think of the exam like the knapsack problem. You only have limited

time, and you may not be able to answer everything. Begin by
identifying how long each question will take you to answer, and the
marks you think you’ll earn. This gives you the metric: marks/time.
Then attempt the questions in decreasing order of marks/time.

Strategy 2 – Sorted by difficulty or time
• Answer them from easiest to hardest, or quickest to longest.

7

Tip - if you get stuck on a problem, stop, and come back to it later. A
break really helps, as it allows your brain to work on it in the background.

Exam preparation

• Re-do all the tutorials, without the solutions.
• Attempt exams from previous years. Even if you can’t answer all the

questions, you’ll notice the types of questions that often appear.
• The exam cannot assess every aspect of the course. So, consider

what material has and has not yet been assessed. Using intuition,
material that has not yet been assessed is more likely to appear on
the exam.

8

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

9

Concept overview (1 of 3)

Concept Topic Lectures Tutorials

Asymptotic notation
O, 𝚯, Ω 3 2
Proofs 4, 5 3

Proofs
Contradiction 4 3
Induction 4, 5 3

Divide & Conquer

Merge sort 6 4
Recurrence equations 7 4
Quicksort 8 5
Recursion tree 8 5

10

Concept overview (2 of 3)
Concept Topic Lectures Tutorials

Hash tables
Definition, probing 9 5
Hash functions 10 5
Probs, Perfect hashing 11 6

Binary Search Trees
Definitions, proofs, insertion 12 6
Search, traversal 13 7
Min-max, pred-succ, deletion 14 7

Red-Black Trees
Properties, definition 15 8
Rotation, insertion 16 8, 9
Deletion 17 9

B-Trees Definition, Insert, Delete 18 9
11

Concept overview (3 of 3)

12

Concept Topic Lectures Tutorials

Graphs
Representation, BFS 19 10
DFS, Sort, Path-finding 19, 20 10
Weighted 21 11

Greedy algorithms
Dijkstra’s, Prim’s algorithms 21 11
Greedy-vs-Dynamic, Mem, iter. 22 12

Dynamic programming
0-1 Knapsack 22 12
Assembly line scheduling 23 12
Longest common subsequence 24

P-NP Problems, HCP, TSP 25

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

13

Defining 𝚯-notation (Big-theta)

For a given function, 𝑔(𝑛), we denote by Θ 𝑔 𝑛 the
set of functions*:

Θ 𝑔 𝑛 = {f(n): there exists positive constants, c1, c2, and n0, such
that: 0 ≤ 𝑐! * 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐" * 𝑔(𝑛) for all n ≥ n0}

14

* By set of functions, we mean many functions, not just one function

𝚯-notation

What this means is that as n gets large enough, the running time is at
least c1g(n), and at most c2g(n):

15

But only when n > n0

Here’s our function
f(n), sandwiched
between c1g(n) and
c2g(n)

𝑐!𝑔(𝑛)

𝑐"𝑔(𝑛)

𝑓(𝑛)

𝑓 𝑛 = Θ 𝑔 𝑛

𝑛
𝑛#

Typical problem

Show that 𝑓 𝑛 = 𝑛" + 2𝑛 + 1 = Θ(𝑛")

How do we show this? Recall that:
𝑐!𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐"𝑔(𝑛)

This problem is therefore composed of two parts.
The first is showing the upper bound. We do this with the standard
method (next slide). Then, show the lower bound (usually easy).

16

Ω 𝑛 𝑂 𝑛

Big-oh Standard method

1. Choose n0 = 1
2. Assuming n > 1, find c such that:

Thus, when n > 1, 𝑓 𝑛 ≤ 𝑐 * 𝑔(𝑛).
When n > 1, implies: 1 < 𝑙𝑜𝑔𝑛 < 𝑛 < 𝑛𝑙𝑜𝑔𝑛 < 𝑛" < 𝑛# < 2$ < 𝑛!
This implication allows us to then optimally use:
3. Raise and simplify. That is, raise the numerator to simplify fraction.
4. Solve for c, and check your answer.

17

𝑓(𝑛)
𝑔(𝑛)

≤ 𝑐
𝑔 𝑛
𝑔 𝑛

= 𝑐

𝑓 𝑛 ≤ 𝑐 , 𝑔(𝑛)

Typical problem – Part 1

First show that 𝑓 𝑛 = 𝑛" + 2𝑛 + 1 ≤ 𝑂(𝑛")
Step 1:
Choosing n0 = 1, then assuming n > 1

Step 2:
𝑓(𝑛)
𝑔(𝑛)

=
𝑛" + 2𝑛 + 1

𝑛"

18

Continued…

Typical problem – Part 1

Show that 𝑓 𝑛 = 𝑛" + 2𝑛 + 1 ≤ 𝑂(𝑛")
Step 3:
𝑓(𝑛)
𝑔(𝑛)

=
𝑛" + 2𝑛 + 1

𝑛"
≤
𝑛" + 2𝑛" + 𝑛"

𝑛"
=
4𝑛"

𝑛"
= 4

Set c = 4.

Step 4:
𝑛" + 2𝑛 + 1 ≤ 4 * 𝑛" whenever n > 1

19

Typical problem – Part 2

Now show that Ω(𝑛") ≤ 𝑓 𝑛 = 𝑛" + 2𝑛 + 1
We have already shown it is O(n). From our relationship:
𝑐!𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐"𝑔(𝑛)

We only need to show Ω 𝑛 .
For lower bounds, we often don’t need the standard method.

20

Ω 𝑛 𝑂 𝑛

Continued…

Typical problem - Part 2

Show that Ω(𝑛") ≤ 𝑓 𝑛 = 𝑛" + 2𝑛 + 1
Step 1: Set c = 1
Step 2: Identify n0 such that the inequality holds
𝑐 * 𝑛" ≤ 𝑛" + 2𝑛 + 1
1 * 𝑛" ≤ 𝑛" + 2𝑛 + 1
𝑛" ≤ 𝑛" + 2𝑛 + 1
Inequality holds when n0 = 1, for all n > 1
E.g., 1" ≤ 1" + 2 + 1 ≤ 4

21

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

22

Proof by contradiction

In proof by contradiction, our goal is to prove that the statement is
True, by showing that it cannot be False.
To do this, we first assume that our hypothesis A is True, and that our
conclusion B is False. We then show why this cannot happen.
This proof technique is valuable when the statement NOT B gives you
useful information.

23

Proof by Contradiction with Big-Oh

Suppose you are asked: Is n	=	O(n2)?
Recall that f(n)	≤	c∙g(n), it is easy to see that n	=	O(n2).
Just take c	=	n0=	1. That is, 1 ≤ 1*12

This is a simple case. But what about n2=	O(n)?

24

Proof by contradiction: n2 =	O(n)?

Lets try and prove n2=	O(n)	cannot hold by contradiction.
Then	c,	n0 would have to exist such that n2 ≤ c·n for all n ≥ n0

1. Statement A (hypothesis): c, n, n0 are real numbers (c, n, 𝑛% ∈ ℝ),
such that 𝑛 > 0, 𝑐 > 0, and 𝑛 ≥ 𝑛%

2. Statement B (conclusion): n2=	O(n)

Lets find a case that proves ¬B = False.

25

Proof by contradiction: n2 =	O(n)?
Rewriting our equation into standard notation:
1. 𝑛" ≤ 𝑐 * 𝑛

2. $!

$
≤ 𝑐

3. 𝑛 ≤ 𝑐
We stated that c is a fixed value, while n can vary freely. So lets set n =
c+1
4. 𝑐 + 1 ≤ 𝑐à False
Conclusion: Our contradiction ¬B, or n2=	O(n), is shown to be False.
Therefore, n2≠	O(n), must be True. ∎

26

Proof by induction

You should consider using induction when B has the form:
For every integer 𝑛 ≥ 1, “something happens”.

Where the “something happens” is P(n), that depends on the integer
n.

Formally, it’s used to prove statements of the form:

∀𝑛 ∈ ℕ 𝑃 𝑛

27

Steps of Induction

1. Base case: Verify that 𝑃 1 is True.
2. Induction step: Use the assumption that 𝑃 𝑛 is True, to prove that

𝑃 𝑛 + 1 is True.

The hypothesis in Step 2, that our statement holds for a particular n, is
called the induction hypothesis.
To prove the inductive step, we assume the induction hypothesis for n,
and then use this assumption to prove that the statement holds for n	+	1.

28

Proving Insertion sort

Insertion sort was: 0 + 1 + 2 + 3 +⋯+ n − 1 = $ $&!
"

= $!&$
"

.

We have a left hand side (LHS) and a right hand side (RHS):
𝑙 𝑛 = 0 + 1 + 2 +⋯+ 𝑛 − 1

𝑟 𝑛 =
𝑛 𝑛 − 1

2
We need to prove that l(n) = r(n) for all n ≥ 1

29

Solve insertion sort with induction

Base case: 𝑙 1 = 0 = 𝑟 1 = ! !&!
"

= 0

Inductive step: assume 𝑙 𝑛 = 𝑟(𝑛), which is our 𝑃 𝑛 induction
hypothesis, and use it to show that 𝑙 𝑛 + 1 = 𝑟 𝑛 + 1

𝑙 𝑛 + 1 = 0 + 1 + 2 +⋯+ 𝑛 − 1 + 𝑛
= 𝑙 𝑛 + 𝑛 = 𝑟 𝑛 + 𝑛

𝑟 𝑛 + 1 = ⁄𝑛 + 1 𝑛 + 1 − 1 2
= ⁄𝑛 + 1 𝑛 2
= ⁄𝑛" + 𝑛 2
= ⁄𝑛" − 𝑛 + 2𝑛 2
= ⁄𝑛" − 𝑛 2 + ⁄2𝑛 2
= 𝑟 𝑛 + 𝑛 = 𝑙 𝑛 + 𝑛

30

Lets try and make this look like

our RHS(n) = $!%$
!

Conclusion: By P.M.I, the statement P(n) is True for n+1, and so the proof is complete. ∎

𝑙 𝑛 = 0 + 1 + 2 +⋯+ 𝑛 − 1

𝑟 𝑛 =
𝑛 𝑛 − 1

2

Class challenge 1

Prove that 𝑛" = 𝑂 2$.

31

Class challenge 2

Prove that 2n = O(n!), for some c, n0, such that 2n < n! for all n > n0

32

Class challenge 3

Consider the set X ∈ ℝ, where
X = {3, 12, 33, 72, …}

Where X is given by 𝑓 𝑛 = 𝑛# + 2𝑛
Are all the elements of X divisible by 3?

33

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

34

Divide, then conquer. But first lets divide…

Divide-and-conquer processes the data structure X as:

1. if X is an atom then
2. process X directly
3. else
4. divide X into two or more smaller pieces
5. apply the algorithm to each piece “recursively”
6. combine the processed pieces (if necessary)

35

Merge sort = 𝚯(n·logn)
To merge sort an array A[0	..	n	- 1] of keys, we repeatedly split A, and after
getting to the bottom we rebuild by merging the pieces. To identify the
pieces that must be split or patched together, we use indices left and right.

Mergesort(A, left, right) // sorts the keys in A[left	..	right]
1. if left	≥ right then
2. stop since A[left	..	right] is sorted
3. else
4. mid	ß (left	+	right)	/	2
5. Mergesort(A, left,	mid)
6. Mergesort(A, mid	+	1,	right)
7. Merge subarrays A[left	..	mid] and A[mid	+	1	..	right]

36

Merge two arrays
We have two arrays X and Y each in sorted order. We want to build array Z containing
all the keys of X and Y in sorted order. Length(X) = l, length(Y) = m:

1. initialise i,	j,	k to 0 (i,	j,	k index the arrays X, Y, Z)
2. while i <	l	and j	<	m do
3. if X[i] < Y[j] then
4. Z[k] ß X[i]
5. i ß i + 1
6. else if X[i] ≥ Y[j] then
7. Z[k] ß Y[j]
8. j ß j + 1
9. k ß k + 1
10. if i ≥	l then copy the end of Y to the end of Z
11. else copy the end of X to the end of Z

37

Analysing divide-and-conquer

When an algorithm contains a recursive call to itself, we can often
describe its running time by a recurrence equation or recurrence.
This equation describes the overall running time on a problem of size n
in terms of the running time on smaller inputs
We call these recurrence equations because the function name T
recurs on the righthand side of the equation.

38

Recurrence equation for merge sort

The time complexity function for merge sort is:
𝑇 1 = 1
𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

It would be easier to compare this function to our landmark functions if
we could find a simple non-recurrent formula defining the function T.

Solving is not always possible, but for merge sort we can.

39

40

T(𝑛) = 2T ⁄𝑛 2 + n
= 2 2T ⁄𝑛 4 + ⁄𝑛 2 + 𝑛
= 4T ⁄𝑛 4 + 2n
= 4 2𝑇 ⁄𝑛 8 + 𝑛/4 + 2𝑛
= 8T ⁄𝑛 8 + 3n
= 8 2𝑇 ⁄𝑛 16 + 𝑛/8 + 3𝑛
= 16T ⁄𝑛 16 + 4n
= 𝐤𝐓 ⁄𝒏 𝒌 + 𝐧 𝐥𝐨𝐠𝒌

T ⁄𝑛 2 = 2T ⁄⁄𝑛 2 2 + ⁄𝑛 2
= 2T ⁄𝑛 4 + ⁄𝑛 2

T ⁄𝑛 4 = 2𝑇 ⁄𝑛 2/4 + 𝑛/4
= 2𝑇 ⁄𝑛 8 + 𝑛/4

T ⁄𝑛 8 = 2𝑇 ⁄𝑛 2/8 + 𝑛/8
= 2𝑇 ⁄𝑛 16 + 𝑛/8

Solution
k = 1

Solve the merge sort recurrence
Base case: 𝑇 1 = 1
Function: 𝑇 𝑛 = 2𝑇 ⁄𝑛 2 + 𝑛

Workspace

k = 2

k = 3

k = 4

See L07 for induction solution

Quicksort implementation

QUICKSORT (A, p, r):
1 if p < r
2 q = PARTITION(A, p, r)
3 QUICKSORT(A, p, q-1) // First half, from p up to partition point q

4 QUICKSORT(A, q+1, r) // Second half, from q+1 up to end r

Initial call is QUICKSORT(A, 1, n)

41

Recall
A[p .. r]
p = first index
r = last index

Partitioning
The quicksort algorithm is deceptively simple. However, the key insight lies in
the partitioning process.

PARTITION(A, p, r)
x = A[r]
i = p - 1
for j = p to r - 1

if A[j] ≤ x
i = i + 1
swap A[i] with A[j]

swap A[i+1] with A[r]
return i + 1

42

PARTITION always selects an element
x = A[r] as a pivot element around
which to partition the subarray A[p..r].

Quicksort: best case analysis

The best case occurs when partition produces two subarrays, each of
which is no more than ⁄𝑛 2. That is, completely balanced subarrays
every time. Our function here is:
Base case: 𝑇 1 = 1
Thing to solve: 𝑇 𝑛 = 𝑇 ⁄𝑛 2 + 𝑇 ⁄𝑛 2

This is the same equation as mergesort (phew!)
In the best case, Quicksort is 𝑂 𝑛 log" 𝑛

43

Balanced partitioning

That’s the worst case and best case. But what about the average case?
The average-case running time of quicksort is much closer to the best
case than to the worst case.
Consider a pivot that always gives us a 9-to-1 (90%/10%) split of the
data (hmm, that sounds bad…). In that case, the function is:

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝜃(𝑛)
This is tricky to solve with the substitution method, so we will use a
recursion tree instead.

44

45

𝑇 𝑛 = 𝑇 ⁄9𝑛 10 + 𝑇 ⁄𝑛 10 + 𝑐𝑛

Tree

n

𝑇 1 = 1

Row sumRecursive 1 Recursive 2 Constant

c·n

9
10𝑛

1
10𝑛

0

Tree depth

1 c·n

9!

10! 𝑛
9
10!

𝑛
9
10!

𝑛 1
10!

𝑛 c·n2

9&

10& 𝑛
9!

10& 𝑛
c·n3

10'

9'
= 𝑛

10'

1'
= 𝑛

10
9

'
= 𝑛

10
1

'
= 𝑛

log"#
(
𝑛 = 𝑖 log"# 𝑛 = 𝑖

…

i

Calculating our total work

Using this fact, our equation can be rewritten as:

log#$
%
𝑛 =

log& 𝑛

log&
10
9
= 𝑐 @ log& 𝑛

Since V1 log"
!%
0

is a constant, we replace it with c. As long as this value
is a constant, the log doesn’t matter in asymptotic notation.
Again, we do ‘n’ work per level, so rewriting O 𝑛 × log"#

$
𝑛 we get:

𝑇 𝑛 = 𝑂 𝑛 log" 𝑛

46

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

47

Hashing

48

Using hash function h to map keys to hash-table slots.
Keys k2 and k5 map to the same slot, and collide.

U
(universe of keys)

k1

K
(actual
keys)

k2

k3
k4

T

0

h(k1)

h(k3)

h(k2)=h(k4)

m-1

Collision

The expected time to
search for an element in
a hash table is O(1),
under some reasonable
assumptions.

Worst-case search time is
𝚯(n), however.

Linear probing

H(k, i) = (h(k) + i) % m

where k is the key, i is the number of collisions so far, and m is the
array's capacity. The home cell is given by H(k, 0).

49

Linear probing example

n = {17, 19, 18, 23}, m = 5, using h(k, i) = (h(k) + i) % m

h(k, i) = (17 + 0) % 5 = 2
h(k, i) = (19 + 0) % 5 = 4
h(k, i) = (18 + 0) % 5 = 3
h(k, i) = (23 + 0) % 5 = 3, set i += 1
h(k, i) = (23 + 1) % 5 = 4, set i += 1
h(k, i) = (23 + 2) % 5 = 0

50

0 1 2 3 4

23 17 18 19

Done!

Double hashing

The drawback of linear and quadratic probing is that collision
resolution strategies follow the same path from a collision point
regardless of key value.
A better solution is double hashing:

ℎ 𝑘, 𝑖 = ℎ! 𝑘 + 𝑖 * ℎ" 𝑘 %𝑚

• i = the number of collisions so far

• h1 = division hashing

• m = table size
• h2 = a secondary hash function

51

h2 is often something like h2(k) = 1 + k%(m - 1).

Class challenge 4

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

52

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

quadratic double

H(k, i) = (k%m + i2) % m H(k, i) = (k%m + i(1+k%(m-1)) % m

Total collisions = 0 Total collisions = 0

Chaining

In chaining, we place all the elements that hash to the same slot into
the same linked list.

53

U
(universe of keys)

k5

K
(actual
keys)

k8

k2
k4

T

/ 0

/ 1

2

/ 3

/ 4

5

/ 6

/ 7

8

/ 9

/ k2 k4 /

/ k5 /

/ k8 k1 /

k1

A universal set of hash functions

Choose a prime number p big enough that every possible key k is < p,
and choose your table size m < p.

Now make ℎ1,3 𝑘 = 𝑎𝑘 + 𝑏 𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑚
The parameters a and b may take on integer values up to p - 1, but you
must choose a > 0.
a and b are chosen randomly at program start up.

54

Perfect hashing

Main hash table: choose size m = n where n is the number of data
items, choose prime p > the biggest key value. Choose a and b
randomly to get primary hash function h(k) = ((ak + b)%p)%m.
Test h as follows:
1. For each key k, work out the home cell h(k). Keep a count ni for

each cell i of how many keys hash to i.

2. Check whether space required is too big: is the sum of all the 𝑛4"
giving a total > 2n? Then h is not good enough so repeat the process
with new a, b for a new primary hash function.

55

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

56

Binary search tree

57

Key

TL TR

< <

A binary tree T has the BST-property if:
• nodes in T have a key field of ordinal

type, so they can be ordered by <
• for each node N in T, N's key value is

greater than all keys in its left subtree
TL and less than all keys in its right
subtree TR, and TL and TR are binary
search trees.

Height vs Depth

58

The height of a BST is the
number of edges from the
root to the deepest leaf.

The depth of a node is
the number of edges
from that node to the
root of the tree.

Search example

59

Trace the search path for Key = 13, indicating
branch points in the pseudocode.

function BST_Search(BST T, KeyType key)

if T == NIL then

return Not Found

else if key == T→key then

return T

else if key < T→key then

return BST_Search(T→left, key)

else

return BST_Search(T→right, key)

end if

end function

Inorder traversal

60

1: function Inorder_traversal(BST T)

2: if T ≠ NIL then

3: Inorder_traversal(T→left)

4: process(T)

5: Inorder_traversal(T→right)

6: end if

7: end procedure

F

= current node

= completed node

= processing (on call stack)

B G

A D

C E

I

H

Process output: A B C D E F G H I= Element processed

Delete ‘I’ (1 child)

61

F

B G

A D

C E

I

H

1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

Delete ‘I’ (1 child)

62

F

B G

A D

C E

I

H

1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

Delete ‘I’ (1 child)

63

F

B G

A D

C E

H I

1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

Visual realignment

Delete ‘I’ (1 child)

64

F

B G

A D

C E

H

1: procedure BST_delete(T)

2: if T→left == NIL and T→right == NIL then

3: T→parent→[left or right] = NIL

4: delete T

5: else if T has one child then // splice out T

6: T→parent→[left or right] = T→[left or right]

7: delete T

8: else if T has two children then

9: BST_replace_with_successor(T)

10: end if

11: end procedure

Visualising an RBT

65

Legend
• Black nodes are darkened, red nodes are shaded.
• Every leaf (external nodes), are black, and shown as NIL
• Each node is marked with its “black height”. E.g., black height of the root is 3.
• Leaves (external nodes) have a black height of 0 (unmarked).

1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black.
5. For each node, all paths from the node to leaves

contain the same number of black nodes.
The number of black nodes on
any simple path from, but not
including, a node x down to a
leaf, that also includes the leaf
node. Denoted bh(x).

27

17 41

5314

16

21

19 23

30

29 3811

6 13 15 20

2

35 39

NILNIL

NIL NIL NIL NILNIL

NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL

NIL NIL

3

3

2

2

1

1

1

1

1 1

1

2

1

2

2 2

1 1

11

NIL NIL

RBT Properties

An RBT is a BST with the following properties:
1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil/null) is black.
4. If a node is red, then both its children are black*.
5. For each node, all paths from the node to leaves contain the same

number of black nodes.

66

* This implies we cannot have consecutive red nodes.

Rotations

Rotations work by updating the pointer structure of the tree. When we
do a right-rotation on node y, we assume that its left child x is not T.nil.
y may be any node in the tree whose left child is not T.nil.
Right-rotation
• “pivots” around the edge from x to y.
• Makes x the new root of the subtree
• y becomes x’s right child
• x’s right child becomes y’s left child.

67

y

x 𝛾

𝛼 𝛽

𝛼

x

y

𝛾𝛽Right-Rotate(T, y)

Left-Rotate(T, x)

Insertion

The basic algorithm for inserting a node into an RBT is:

68

1: procedure RBT_Insert(T, z)
2: BST_insert(T, z)
3: z.colour = RED
4: if z→parent == RED then // Violation of property 4

5: RBT_Insert_Fixup(T, z)
6: end if
7: end procedure

Insertion fixup

1. Label node inserted (z), and uncle (y)
2. Identify case fixup (1, 2, or 3) based on tree layout.

69

y

Case 1: z’s uncle, y, is red.
• L5-6: Colour z’s parent and uncle black
• L7: Colour z’s grandparent red
• L8: Z now points to z’s grandparent

Case 2: z’s uncle y is black and z is a right child.
• L11: z now points to z’s parent
• L12: Left rotate on z (i.e. old z’s parent)

Case 3: z’s uncle y is black and z is a left child.
• L14: Colour z’s parent black
• L15: Colour z’s grandparent red
• L16: Right rotate on z’s grandparent

RBT Deletion

At a conceptual level there are two stages
1. Delete the node
2. Execute a fix-up procedure (if deleted/spliced node was black).

Both stages require you to label nodes and perform an operation.

70

Stage 1 – Node deletion

To delete a node z, BST_delete recursively searches for z, and then:
1. If z has < 2 children, replace it by a child (possibly nil); or
2. If z has == 2 children, replace it by its successor

Some node, call it y, eventually gets spliced out.
It may be that y	=	z, or y may be z’s successor.

Here z has two
children, so y is z’s
successor, 30. y gets
spliced out.
x replaces y

z

y

x

Stage 2 - Fixup

Fixup labels:
• z is the node to be deleted
• y is the node that gets spliced out (sometimes y = z and sometimes
y is z’s successor)

• x is the child that replaced y
• w is the new sibling of x

72

For deletion fix up, case violation looks at sibling.
This is contrasts with insertion fix up, which looked at uncle.

Stage 2 - Four cases to handle

1. x's sibling, w, is red. Fix then fall to case 2, 3, or 4.
2. w is black and has two black children. Fix then traverse up the tree.

If fell through from case 1, terminate.
3. w is black and w’s left child (or “inner” child) is red and right child

(“outer”) is black. Fix then fall to case 4.
4. w is black and w’s right child (“outer”) is red. Fix and terminate.

Here, “outer” and “inner” refer to w’s child, and its position with respect to x.

73

Case 4 - Example

74

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 - Example

75

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 - Example

76

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 – w is black, w’s left (outer) child is red
• Make w x-parent colour
• Make x-parent black
• Make w’s left (outer) child black
• Right-rotate x-parent
• Make x the root

Note: here we have x as a right-child. Therefore, we flip
all left and rights. These are shown underlined.

Case 4 - Example

77

Delete 5

1. Identify y and z.
2. Delete z as for a BST
3. Identify w, w’s children, and case
4. Fix any RBT violations

Y = spliced out node (removed from tree)
Z = Key value to remove
W = x’s sibling

Case 4 – w is black, w’s left (outer) child is red
• Make w x-parent colour
• Make x-parent black
• Make w’s left (outer) child black
• Right-rotate x-parent
• Make x the root

x

x is now the tree root è terminate

B-tree Definition
A B-tree of minimum degree t ≥ 2 has the following properties:

1. Every node x has the following attributes:
a) x.n = the number of keys currently stored in node x
b) Keys are stored in increasing order: x.key1 ≤ x.key2 ≤ … ≤ x.keyn
c) x.leaf, a Boolean, is TRUE if x is a leaf, FALSE if x is an internal node.

2. All leaves have the same depth, which is the tree’s height h

3. Nodes have upper and lower bounds on the number of keys.
a) Every node other than the root has x.n ≥ t – 1 keys. Every internal

node other than the root has ≥ t children.
b) Every node may contain x.n ≤ 2t – 1 keys. An internal node may have

≤ 2t children (m = 2t). A node is full if it has x.n = 2t – 1 keys.

4. The root has at least two children if it is not a leaf node. 78

Example: Insert 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

For t = 2, the maximum number of keys is 3 (2t-1) and max children m = 4.

79

Full root, split
on 4 insert,
height +1

Full node, push
up on 6 insert

Full node, push
up on 8 insert

Full root, split
on 9 insert,
height +1

Full node, split
on 1o insert

Deletion cases
1. x is a leaf and contains the key (it will have at least t keys). This case

is trivial – just delete the key.
2. x is an internal node and contains the key. There are 3 subcases:

2a. predecessor child node has at least t keys
2b. successor child node has at least t keys
2c. neither predecessor nor successor child has t keys

3. x is an internal node, but doesn't contain the key. Find the child
subtree of x that contains the key if it exists (call the child c). There
are three subcases:
3a. c has at least t keys. Simply recurse to c.
3b. c has t - 1 keys and one of its siblings has t keys.
3c. c and both siblings have t - 1 keys.

80

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

81

Adjacency lists

82

1 2 3

4 5 6

1 2

3

5 4

1

2

3

4

5

2

1

2

2

4

5 /

5

4 /

5

1

3

3 /

2 /

4 /

1

2

3

4

5

6

2

5 /

6

2 /

4 /

6 /

4 /

5 /

BFS Example

83
Q = Queue

Start

Next

BFS Example

84

Next
Next

End

DFS Example

85

Start

Next

(e) We rediscover vertex v, but it’s not white, so this is a back edge.
(f) We’ve now explored all vertices in x, colour black, and recurse up to (g)

DFS Example

86

Next

(j) Explored all vertices in u, colour black.
(k) Explore next white vertex in Graph (Liens 5-7 of DFS)

End

(l) Rediscover node y, but it’s not white, so cross edge.
(p) All vertices fully explored, colour last vertex black.

Topological sort

87

List sorted by decreasing order of finish times. Edges retained.

procedure Topological-Sort(G)
1: call DFS(G) to compute finishing times v.f for

each vertex v
2: as each vertex is finished, insert onto front

of a linked list
3: return linked list

88

procedure Dijkstra(G,w,s)
1: for each vertex 𝑣 ∈ 𝐺. 𝑉 // Initialise all vertices
2: v.d = ∞
3: v.π = NIL
4: s.d = 0 // Set source distance to 0
5: S = Ø // Set of vertices with shortest-paths
6: Q = G.V // Set of unvisited vertices
7: while Q ≠ Ø // While still vertices to explore
8: u = Extract-Min(Q) // Get vertex with min shortest path d
9: S = S ∪ 𝑢 // Add to set with shortest paths
10: for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // For each adjacent vertex
11: if v.d > u.d + w(u,v) // Is u’s adj vertex v.d longer than this path?
12: v.d = u.d + w(u,v) // Update v’s distance to shorter value
13: v.π = u // u is v’s new predecessor
end procedure

Dijkstra’s algorithm - Single procedure version

Example: Dijkstra’s algorithm

89

s is source vertex. Shortest-path estimates, v.d, appear within vertices. Shaded
edges indicate predecessor values. Black vertices are in set S. White vertices are
in min priority queue Q = V - S.
(a) Just before the while loop (Lines 4-8). Always begin at source s, as s.d = 0,

Line 4.
(b) Add s to S (coloured black), and relax adjacent vertices t and y. y has the

minimum v.d (shaded grey), and will be selected next.
(c) Add y to S, adjacent vertices t, x, and z. Note that t is updated again.

continued

Line numbers from single procedure code

Example: Dijkstra’s algorithm

90

d) z is selected next. Update adjacent vertex x. t will be selected next.
e) Add t to S, update adjacent and final vertex x.
f) Add x to S. While loop (Line 7) will now terminate s all vertices have

moved from Q to S.

91

procedure MST-Prim(G,w,r) // r = root of minimum spanning tree
1: for each vertex 𝑢 ∈ 𝐺. 𝑉 // Initialise graph
2: u.key = ∞
3: u.π = NIL
4: r.key = 0
5: Q = G.V // Set V – S (not in MST)
6: while Q ≠ Ø
7: u = Extract-Min(Q) // Get vertex on light-edge that crosses cut (.key)
8: for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] // Update u’s adjacent vertices not in MST
9: if v ∈ 𝑄 and w u, v < v. key // Update non-MST vertices with lower weight edge?
10: v.π = u
11: v.key = w(u,v)
end procedure

Prim’s algorithm

Example: Prim’s algorithm

92

Root = vertex a

Finished

Class challenge 5

To illustrate the difference between Dijkstra’s and Prim’s algorithms,
apply them respectively to the following graphs, starting at ‘x’.

93

x

y

z

2

2

1 x

y

z

2

2

1

Dijkstra’s Prim’s

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

94

Approach to dynamic programming

Greedy and dynamic programming approaches are used for
optimisation problems.

Dynamic programming approach
1. Start with a greedy approach. If that fails, try dynamic.
2. Identify decision points in the problem, and determine if the

problem has optimal substructure.
3. Define recursive solution
4. Improve it with memoisation or an iterative approach

95

0-1 Knapsack Recursive solution
We have made the following observations:

1) If there are no items in our set S0, then the maximum value is 0.
2) If there is no space in our knapsack, then the maximum value is 0
3) If the kth item can't fit in the knapsack, then the maximum is the same as

the maximum for k – 1 items.
4) Otherwise, the maximum is either:

• the maximum without the kth item in the optimal set, in which case
we have a new problem with k – 1 items and maximum weight w.

• the maximum with the kth item in the optimal set, in which case we
have a new problem with k – 1 items and maximum weight w - wk.

96

Recursive non-greedy solution

So we can define our optimum V[k, w] recursively as:

97

𝑉 0,𝑤 = 0
𝑉 𝑘, 0 = 0
𝑉 𝑘,𝑤 = 𝑉 𝑘 − 1,𝑤 𝑖𝑓 𝑤M > 𝑤
𝑉 𝑘,𝑤 = max(𝑉 𝑘 − 1,𝑤 , 𝑣M + 𝑉 𝑘 − 1,𝑤 − 𝑤M)

1) No items

2) No space

3) kth item can’t fit

4) Max of:
a) Without kth
b) With kth

98

procedure RecursiveKnapsack(k, W, V, wmax) // Knap item, Weights, Values, max weight
1: if k==0 or wmax ≤ 0 return 0, Ø // No items OR no space (1 & 2)
2: if W[k]>wmax // Can’t fit k into knapsack (3)
3: return RecursiveKnapsack(k-1,W,V,wmax)
4: // Check the maximum value (v1) without item k (4a)
5: v1, items_not = RecursiveKnapsack(k-1,W,V,wmax)
6: // Check the maximum value (v2) with item k (4b)

7: v2, items_do = RecursiveKnapsack(k-1,W,V,wmax-W[k])
8: v2 = v2 + V[k] // Add value of current item
9: items_do.add(k) // Add item k to list of take items
10: if v2 > v1
11: return v2, items_do // Do use item k
11: else
12: return v1, items_not // Don’t use item k
end procedure

Recursive top-down implementation (Brute force)

Assembly line

99

ei = Entry time for line i
ai,j = Assembly time for Station j, on line i

ti,j = Transfer time away from line i, after station Si,j

xi = Exit time for vehicle to leave line i

Station S1,1 Station S1,2 Station S1,n-1 Station S1,n

Station S2,1 Station S2,2 Station S2,n-1 Station S2,n

Assembly line 1

Assembly line 2

Developing a recursive solution

We can now define our final recursive equations:

𝑓![𝑗] = n
𝑒! + 𝑎!,!
min(𝑓! 𝑗 − 1 + 𝑎!,N , 𝑓" 𝑗 − 1 + 𝑡",N&! + 𝑎!,N)

𝑓"[𝑗] = n
𝑒" + 𝑎",!
min(𝑓" 𝑗 − 1 + 𝑎",N , 𝑓! 𝑗 − 1 + 𝑡!,N&! + 𝑎",N)

100

If j = 1,
If j ≥ 2.

If j = 1,
If j ≥ 2.

Class challenge 6

101

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

Longest common subsequence problem

Our theorem gives us a very clear optimal substructure problem from
which we can write a naive recursive solution (brute force).
Let 𝑙[𝑖, 𝑗] be the length of an LCS of the sequences 𝑋4 and 𝑌N. If either
prefix is zero, 𝑖 = 0 𝑜𝑟 𝑗 = 0, then the LCS has length 0. Then:

𝑙[𝑖, 𝑗] t
0,
𝑙[𝑖 − 1, 𝑗 − 1] + 1,
max 𝑙[𝑖, 𝑗 − 1], 𝑙[𝑖 − 1, 𝑗]

102

if 𝑖 = 0 or 𝑗 = 0 ,
If 𝑖, j > 0 and 𝑥4 = 𝑦N ,
If 𝑖, j > 0 and 𝑥4 ≠ 𝑦N .

1) Empty strings

2) Match char, or

3) Max of:
a) X & Y-1
b) X-1 and Y

Today’s outline

1. Exam details and preparation
2. Course overview
3. Asymptotic notation
4. Proofs
5. Divide and Conquer
6. Hash tables
7. Trees
8. Graphs and greedy algorithms
9. Dynamic programming
10. P and NP

103

P and NP

104

Suggested reading

The lectures notes are the primary examinable material.
For each lecture, see the relevant suggested textbook sections.

105

Solutions

106

Class challenge 1
Prove that 𝑛" ≤ 2$

Base case: 4" = 16 ≤ 2O = 16
Induction hypothesis: 2$ ≥ 𝑛" for some n ≥ 4
Inductive step: 2$P! ≥ 𝑛 + 1 " = 𝑛" + 2𝑛 + 1
2$P! = 2 * 2$

= 2$ + 2$
≥ 𝑛" + 𝑛"
≥ 𝑛" + 𝑛 * 𝑛
≥ 𝑛" + 4 * 𝑛
≥ 𝑛" + 2 * 𝑛 + 2 * 𝑛
≥ 𝑛" + 2 * 𝑛 + 8
≥ 𝑛" + 2 * 𝑛 + 1

107

Lets use our induction hypothesis here, that 2n > n2

Lets use the second part of our induction hypothesis, n ≥ 4

Lets use the second part of our induction hypothesis, n ≥ 4

Conclusion: Since both the base case and the inductive
step have been proved, the statement P(n) is True for n+1,
for all n > 4. ∎

Class challenge 2
Prove that 27 ≤ 𝑛! for all n ≥ 4

Base case: 28 = 16 ≤ 4! = 4 ∗ 3 ∗ 2 ∗ 1 = 24
Induction hypothesis: 27 ≤ 𝑛! for some n ≥ 4

Inductive step: 279: ≤ 𝑛 + 1 !
𝑛 + 1 27 ≤ 𝑛 + 1 𝑛!
𝑛 + 1 27 ≤ 𝑛 + 1 !

Since n + 1 > 2, then 𝑛 + 1 27 > 2 , 27 = 279:

Therefore: 279: ≤ 𝑛 + 1 ! for all n ≥ 4

Conclusion: Since both the base case and the inductive step have been proved, the
statement P(n) is True for n+1, for all n > 4. ∎

108

Lets multiple both sides of inequality by (n+1)

Class challenge 3

Base case: 𝑓 1 = 1; + 2 , 1 = 3 - True
Inductive step: 𝑃 𝑛 + 1 : 𝑓 𝑛 + 1 = 𝑛 + 1 ; + 2 , 𝑛 + 1

𝑓 𝑛 + 1 = 𝑛 + 1 ; + 2 , 𝑛 + 1
= 𝑛 + 1 𝑛 + 1 𝑛 + 1 + 2𝑛 + 2
= 𝑛< + 2𝑛 + 1 𝑛 + 1 + 2𝑛 + 2
= 𝑛; + 3𝑛< + 3𝑛 + 1 + 2𝑛 + 2
= 𝑛; + 2𝑛 + 3𝑛< + 3𝑛 + 3
= 𝑓(𝑛) + 3𝑛< + 3𝑛 + 3
= 𝑓(𝑛) + 3 , 𝑛< + 𝑛 + 1

Conclusion: Since both the base case and the inductive step have been proved, the
statement P(n) is True for n+1, and so the proof is complete. ∎ 109

Here’s our f(n).	Lets use the induction
hypothesis, and assume that f(n) is True…

This term will always be divisible by 3.

Where X is given by 𝑓 𝑛 = 𝑛; + 2𝑛
Are all the elements of X divisible by 3?

Class challenge 4

Insert (12, 13, 43, 52, 72, 63) with h(k) = k%10, using first quadratic probing then
double hashing.

110

0

1

2 12

3 13

4 43

5 72

6 52

7 63

8

9

0 52

1 43

2 12

3 13

4 72

5 63

6

7

8

9

quadratic double

H(63, 2) = (k%m + i2) % m
= 7

H(63, 2) = (k%m + i(1+k%(m-1)) % m
= 5

Total collisions = 8 Total collisions = 6

Class challenge 5

To illustrate the difference between Dijkstra’s and Prim’s algorithms,
apply them respectively to the following graphs.

111

x

y

z

2

2

1 x

y

z

2

2

1

Dijkstra’s Prim’s

112

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

j 1 2 3 4 5 6
f1[j] 9 18 20 24 32 35
f2[j] 12 16 22 25 30 37

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2

𝑓∗ = min 𝟑𝟓 + 𝟑, 37 + 2 = 38

L* = 1

We set L* to 1, our fastest exit station

Class challenge 6 (1 of 3)

113

With L2[4] = 1 (use S1,3).
With L1[3] = 2 (use S2,2).
With L2[2] = 1 (use S1,1).
Therefore, our fastest path is:
S1,1, S2,2, S1,3, S2,4, S2,5, S1,6

j 2 3 4 5 6
L1[j] 1 2 1 1 2
L2[j] 1 2 1 2 2 L* = 1

Class challenge 6 (2 of 3)

114

Start End

7 9 3 4 8 4

8 5 6 4 5 7

2

2

3

2

3

1

1

2

3

2

4

1

2

4

S1,1 S1,2 S1,3 S1,4 S1,5 S1,6

S2,1 S2,2 S2,3 S2,4 S2,5 S2,6

Fastest path: S1,1, S2,2, S1,3, S2,4, S2,5, S1,6

Class challenge 6 (3 of 3)

Image attributions

115

This Photo by By Behnam Esfahbod, CC BY-SA 3.0

Disclaimer: Images and attribution text provided by PowerPoint search. The author has no connection with, nor endorses,
the attributed parties and/or websites listed above.

