
Cosc 242 Assignment

Due: 4pm Monday September 14th 2020

Overview

In this assignment you will expand and modify code written during the labs to produce a
program based around a tree data structure. This program can be used to process two groups
of words. The �rst group of words will be read from stdin and will be inserted into the tree.
The second group of words will be read from a �le speci�ed on the command line. If any word
read from the �le is not contained in the tree then it should get printed to stdout. A moment
of re�ection will con�rm that this program can be used to perform a basic spell check. You
can begin working on this assignment while you are completing the labs it is based on.

Assignment groups

Everyone in the class should form groups of three to work on the this assignment. You
have until lunchtime Wednesday August 19th to select your groups. Please send an email to
ihewson@cs.otago.ac.nz with the names and University user codes of your group members (e.g.
stuad123, brofr456, jonsu789). If you don't select your own group then one will be chosen for
you containing students who have completed a similar amount of internal assessment. You will
be informed of your group members via email, so please check your University email regularly
and let Iain know if there are any problems. The related labs, and all of the programming for
this assignment should be done working in your groups.

You must not collaborate with, or discuss issues related to the assignment with anyone who
is not a member of your group.

Provided �les

We have provided some �les for you to use when completing this assignment. The �les can be
found in the directory /home/cshome/coursework/242/asgn-files/ and are as follows:

� output-dot.txt � contains extra functions which you should add to your tree.c �le.
You will also need to update tree.h.

� sample-asgn � is an executable (compiled on Linux) which you can use to see if your
program is working correctly. If your program is correct then it should behave exactly
the same as the sample program.

Combining BSTs and RBTs

For this part of the assignment you will combine the code you write for binary search trees
and red-black trees in the labs. Once you have done this, the only di�erence between a bst

1

mailto:ihewson@cs.otago.ac.nz


and an rbt is that the rbt calls a tree_fix() function after every insertion to make sure that
the tree is balanced.

� Create a combination tree ADT which can be either an ordinary bst or a balanced rbt
depending on an enumerated type which gets passed to tree_new().

� Make a static type_t variable called tree_type which can hold the value passed to the
tree `constructor'. The de�nition of the enumerated type in tree.h should look like this:

typedef enum tree_e { BST, RBT } tree_t;

� You don't need to implement a tree_remove() function since removing nodes from an
rbt can be a bit tricky. In fact you might as well remove your old bst_remove() code
since using it would break an rbt.

� Add a tree_depth() function which should return the length of the longest path between
the root node and the furthest leaf node.

� Add a frequency �eld to your struct tree_node and update the frequency whenever
a duplicate item is added to the tree.

� Add the two output_dot graph printing functions which we have provided to your
tree ADT. These will enable you to visualise what your tree looks like � including the
colours and frequencies. You might �nd it useful to use these functions when completing
your tree labs. When you run your tree program with the -o option it should produce
a �le (tree-view.dot by default) containing a representation of your tree using the
"dot" language1. You can produce a nice image of your tree by running the command

dot -Tpdf < tree-view.dot > tree-view.pdf| in a terminal.

� You may have noticed that the rbt you implemented in labs doesn't ensure that the root
is always black. This doesn't a�ect the structure of the tree at all, but you should try
to �x this problem in your program.

The main.c �le

You will need to create a main �le called main.c which uses the tree data structure to perform
a number of tasks. By default, words are read from stdin and added to your tree before being
printed out alongside their frequencies to stdout. This should be done by passing a print_info
function, shown below, to tree_preorder.

static void print_info(int freq, char *word) {

printf("%-4d %s\n", freq, word);

}

All memory allocated should be deallocated before your program �nishes.

All words should be read using the getword() function from the lab book. Helper functions
like getword and emalloc should be in your mylib.c �le.

You should use the getopt library to help you process options given on the command line.
Here is an example of how to use it:

1Dot is a plain text graph description language. For more information see http://www.graphviz.org.

2

http://www.graphviz.org


const char *optstring = "ab:c";

char option;

while ((option = getopt(argc, argv, optstring)) != EOF) {

switch (option) {

case 'a':

/* do something */

case 'b':

/* the argument after the -b is available

in the global variable 'optarg' */

case 'c':

/* do something else */

default:

/* if an unknown option is given */

}

}

You need to include getopt.h to use the getopt library. The letters listed in optstring are
possible valid options. The colon following the letter b indicates that b takes an argument.
As the options are being processed by getopt, they get shifted to the front of the argv array.
After processing, the index of the �rst non-option argument is available in the global variable
optind. For more information have a look at the man page for getopt.h (type man 3 getopt).

When given the command line option -c filename, your program will be used to process
two groups of words. The �rst group will be read from stdin and put into the tree as usual.
These words will function as a dictionary. The second group of words will be read from the
�le speci�ed on the command line. If any word read from the �le is not contained in the
dictionary then it should get printed to stdout. Running your program with a command like
this

./asgn < dictionary.txt -c document.txt

should print out a list of every word from document.txt which is not found in dictionary.txt.
If there is no output then document.txt has no misspelled words (as de�ned in dictionary.txt).

The exact behaviour of your program when given the -c filename option should be as follows:

1. Take filename to be the plain text �le that we want to check the spelling in.

2. Read words from stdin (using the getword() function) and put them into our tree. This
will now function as our dictionary.

3. For each word we read from filename (using getword()) check to see if it is in our
dictionary. If it is then don't do anything. If it is not then print the word to stdout.

4. When �nished checking filename for unknown words print timing information and un-
known word count to stderr like this:

Fill time : 0.320000

Search time : 0.180000

Unknown words = 8690

3



When your program is given the -h option, or an invalid option is given, then a usage message
should be printed and your program should exit.

� Your program should respond to command line arguments as speci�ed in this table:

Option Action performed

-c �lename Check the spelling of words in �lename using words read from stdin
as the dictionary. Print all unknown words to stdout. Print timing
information and unknown word count to stderr. When this option is
given then the -d and -o options should be ignored.

-d Print the depth of the tree to stdout and don't do anything else

-f �lename Write the "dot" output to �lename instead of the default �le name
if -o is also given.

-o Output a representation of the tree in "dot" form to the �le
`tree-view.dot' using the functions given in output-dot.txt.

-r Make the tree an rbt instead of the default bst.

-h Print a help message describing how to use the program

Submission

In order to submit your assignment �les open a terminal and change into a directory which
contains all of your �les. Type the command asgn-submit and press return. You should see a
list of all your �les printed like this:

main.c mylib.h tree.h

mylib.c tree.c

If the �le list looks correct then just press return, and you should see the message:

Submission complete.

� Your assignment should be submitted before 4pm on the due date.

� All group members must submit a copy of the assignment.

Marking

This assignment is worth 15% of your �nal mark for Cosc 242. It is possible to get full
marks. In order to do this you must write correct, well-commented code which meets the
speci�cations.

Program marks are awarded for both implementation and style (although it should be noted
that it is very bad style to have an implementation that doesn't work).

Allocation of marks

Implementation 10
Style/Readability 5

Total 15

4



In order to maximise your marks please take note of the following points:

� Your code should compile without warnings on the Linux lab machines using this com-
mands:

gcc -W -Wall -ansi -pedantic -lm main.c mylib.c tree.c -o asgn

If your code does not compile, it is considered to be a very, very bad thing!

� Your program should use good C layout as demonstrated in the lab book.

� No line should be more than 80 characters long.

� Most of your comments should be in your function headers. A function header should
include:

� A description of what the function does.

� A description of all the parameters passed to it.

� A description of the return value if there is one.

� Any special notes.

Any assignments submitted after the due date and time will lose marks at a rate of 10% per
day late.

You should not discuss issues pertaining to the assignment with anyone not in your group.
All programs will be checked for similarity.

Part of this assignment involves you clarifying exactly what your program is required to do.
Don't make assumptions, only to �nd out that they were incorrect when your assignment gets
marked.

You should check your University email regularly, since email clari�cations may be sent to the
class email list.

If you have any questions about this assignment, or the way it will be assessed, please see Iain
or send an email to ihewson@cs.otago.ac.nz.

5

mailto:ihewson@cs.otago.ac.nz

