Overview

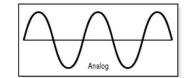
- This Lecture
 - Signals and Encoding
 - Source: Section 1.1, 3.4, 4.1, 4.2, 5.1
- Next Lecture
 - Data Transmission
 - Source: Sections 1.1, 4.3, 6.1

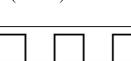
COSC244

Lecture 2 - Signals and encoding

Data Representation

- Morse code
- Bit (0,1), Byte (8 bits)
- ASCII code (American Standard Code for Information Interchange, 7-bit code, keyboard characters)
- Unicode (16-bit, math symbols, more characters)
- Other codes (8-bit EBCDIC by IBM)


1


			ASC	II	Co	de			
01000	01 21	!	1000001	41	А	1100001	61	а	
01000			1000010	42	в	1100010	62	ь	
01000		#	1000011	43	С	1100011	63	с	
01001		\$	1000100	44	D	1100100	64	d	
01001	01 25	%	1000101	45	Ε	1100101	65	e	
01001	10 26	&	1000110	46	F	1100110	66	f	
01001	11 27	•	1000111	47	G	1100111	67	g	
01010	00 28	(1001000	48	Н	1101000	68	h	
01010	01 29)	1001001	49	Ι	1101001	69	i	
01010	010 2 A	*	1001010	4 A	J	1101010	6 A	j	
01010	011 2B	+	1001011	48	K	1101011	6B	k	
01011	.00 2C	,	1001100	4C	L	1101100	6C	1	
01011	101 2D		1001101	4D	Μ	1101101	6D	m	
01011	L10 2E	•	1001110	4E	N	1101110	6E	n	
01011	111 2F	/	1001111	4F	0	1101111	6F	0	
01100	000 30	0	1010000	50	Р	1110000	70	р	
01100	001 31	1	1010001	51	Q	1110001	71	q	
01100	010 32	2	1010010	52	R	1110010	72	r	
01100	011 33	3 3	1010011	53	S	1110011	73	S	
0110	100 34	4	1010100	54	Т	1110100	74	t	
0110	101 35	5 5	1010101	55	U	1110101	75	u	
0110	110 36	6 6	1010110	56	V	1110110	76	v	
0110	111 37	7 7	1010111	57	W	1110111	77	w	
0111	000 38	8 8	1011000	58	X	1111000	78	x	
COSC2 0111	001 39	9	1011001	59	Y	1111001	79	У	

Definitions

- Computers are digital
- Signal: A way of conveying information
 - electrical voltage or current, radio waves, light
- To be transmitted, information must be transformed to electromagnetic signals.
 - Signals can be analog or digital
 - Digital transmission and Analog transmission

Analog signals (Telephone/Radio) Digital signals (0/1 bit)

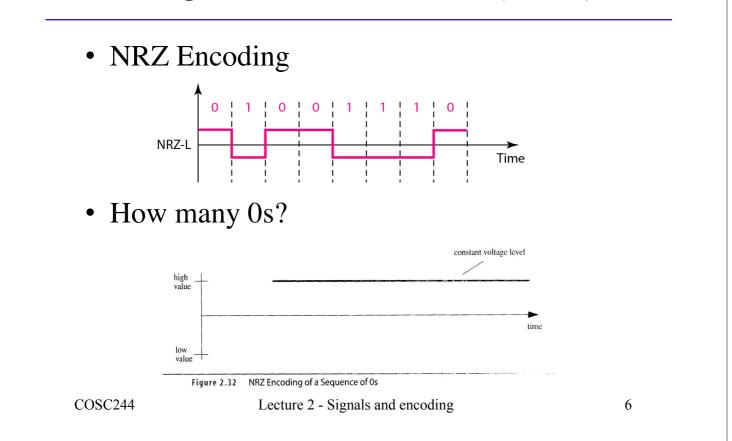
Digita

COSC244

Lecture 2 - Signals and encoding

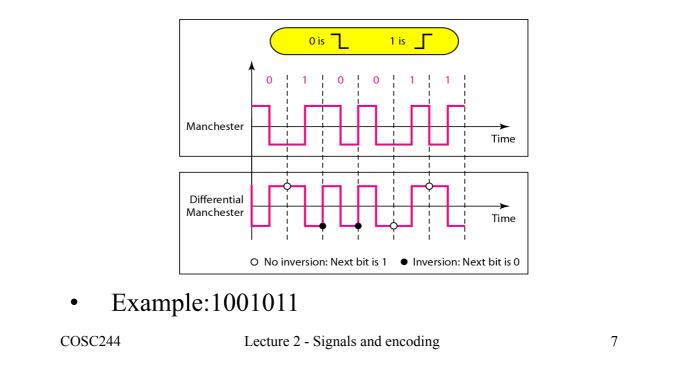
3

Digital Transmission


- Digital-to-digital conversion
 - Digital transmission of digital data
 - Converts sequence of bits to digital signals
- Encoding
 - Assigning a meaning to signals
 - A signal is worthless if no meaning is assigned
 - A different encoding gives a particular signal a different interpretation
 - NRZ, Manchester, Differential Manchester

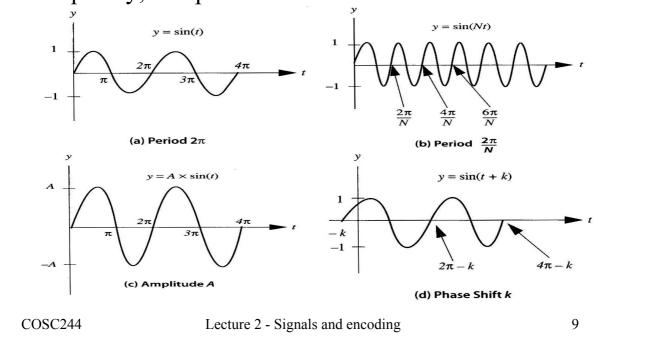
COSC244

Lecture 2 - Signals and encoding

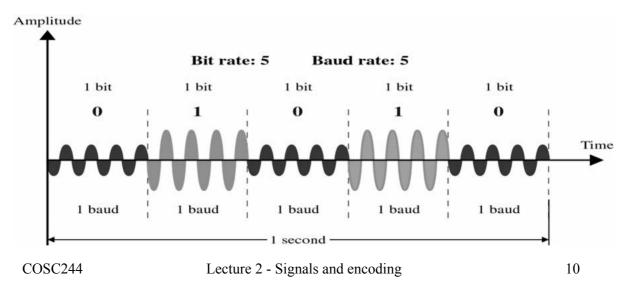

5

Digital Transmission (cont.)

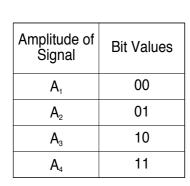
Digital Transmission (cont.)

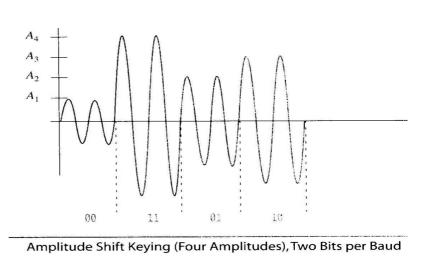

• Manchester and Differential Manchester

Analog Transmission


- Modem: Modulator-demodulator
 - Converts digital to analog (Modulation)
 - Send the analog signal over telephone line
 - Receive the analog signal
 - Convert the analog signal to digital (Demodulation)
 - D/A and A/D Conversion
- Methods: FSK, ASK, PSK, QAM

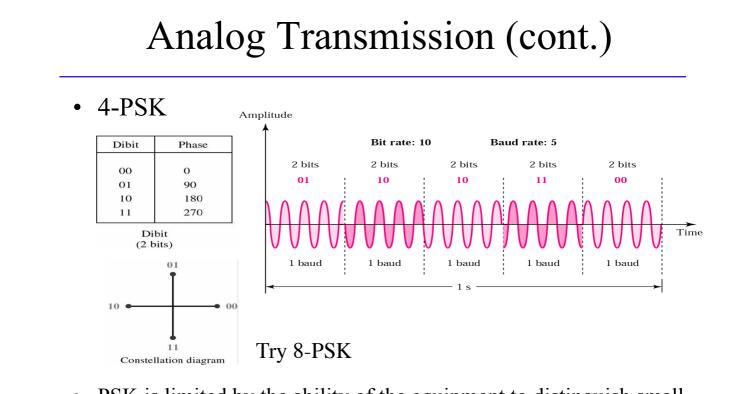
• Analog signals can be distinguished by amplitude, frequency, and phase.




Analog Transmission (cont.)

- Amplitude modulation
 - Amplitude shift keying (ASK): The amplitude of the carrier signal is varied to create signal element.
 - ASK is highly susceptible to noise interference

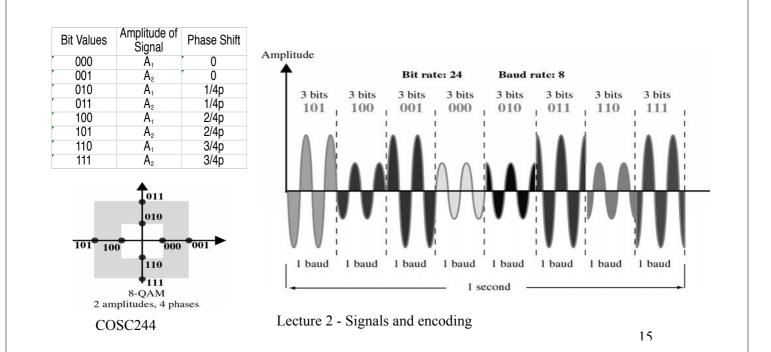
• Can we send more than one bit at a time?


COSC244

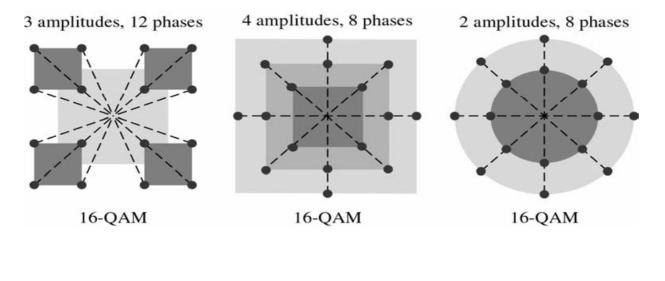
Lecture 2 - Signals and encoding

11

Analog Transmission (cont.) Frequency modulation - Frequency shift keying (FSK): Frequency of signal is varied to represent binary 1 or 0 - FSK avoids most of the noise problems of ASK, but is limited by the physical capabilities of the carrier Amplitude Bit rate: 5 **Baud rate: 5** 1 bit 1 bit 1 bit 1 bit 1 bit 1 Time 1 baud 1 baud 1 baud 1 baud 1 baud 1 second COSC244 12 Lecture 2 - Signals and encoding


Analog Transmission (cont.) • Phase modulation - Phase shift keying (PSK): The phase of the signal is varied to represent different signal elements. - PSK is not susceptible to the noise degradation that affects ASK, nor to the bandwidth limitations of FSK - Constellation diagram Amplitude Bit rate: 5 phase bit 0 0° 1 180° 0 Time 1 signal 1 signal 1 signal i 1 signal i 1 signal element ! element | element | element | element | 0 1 s 13 Baud rate: 5

• PSK is limited by the ability of the equipment to distinguish small differences in phase (Why not combine PSK with ASK?)


COSC244

• Quadrature Amplitude Modulation (QAM): a combination of ASK and PSK

Analog Transmission (cont.)

• Variations of QAM are numerous. The example is 8 QAM, try design 16 QAM

COSC244

Lecture 2 - Signals and encoding

- Bit Rate and Baud rate
 - Bit rate : the number of bits per second.
 - Baud rate : the number of signal elements per second.
 (Number of signal changes per second)
 - Bit rate = baud rate \times n

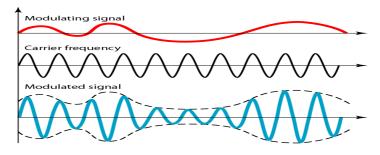
(n is Number of bits represented by each signal element)

- In the analog transmission of digital data, the Baud rate is less than or equal to the bit rate
- An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the baud rate and bit rate. (1k bauds per second, 4kbps)

COSC244

Lecture 2 - Signals and encoding

17


Modulating/Carrier/Modulated signals

- Modulating signal: information to transmit
- Carrier signal: base signal (high frequency) that device produces (to be changed by modulating signal)
- Modulated signal: carrier signal altered (characteristics changed) by the modulating signal.
- Frequency of the carrier signal is greater than the highest frequency of the modulating signal

COSC244

Analog-to-analog conversion

- Analog-to-analog conversion is the representation of analog information by an analog signal.
- Use a high frequency signal to carry the information of a low frequency signal.

COSC244

Lecture 2 - Signals and encoding

Analog-to-digital conversion

- Digital representation of analog data
 - Multimedia, music, movies, microphone, camera
 - Accurate replay of high quality analog signals
- Digitization: Analog signal is sampled, quantized and encoded as streams of bits.

Summary

- Data Representation
- Digital Transmission
 - Encoding Methods for Digital to digital conversion
- Analog Transmission
 - Modulation Methods for digital to analog conversion
- Analog-to-digital/Analog-to-analog conversion

COSC244	Lecture 2 - Signals and encoding	21