Overview

- This Lecture
 - Signals and Encoding
 - Source: Section 1.1, 3.4, 4.1, 4.2, 5.1
- Next Lecture
 - Data Transmission
 - Source: Sections 1.1, 4.3, 6.1

Data Representation

•	Morse	code
---	-------	------

• Bit (0,1), Byte (8 bits)

A•-	J e	5
B-•••	K-•-	т –
C -•-•	L •-••	U ••-
D-••	M	V • • • -
E •	N -•	W •
F ••-•	0	X - • • -
G•	P	Y
$H \bullet \bullet \bullet \bullet$	Q	Z••
	R • - •	

- ASCII code (American Standard Code for Information Interchange, 7-bit code, keyboard characters)
- Unicode (16-bit, math symbols, more characters)
- Other codes (8-bit EBCDIC by IBM)

ASCII Code

	0100001	21	!	1000001	41	A	1100001	61	a
	0100010	22	••	1000010	42	В	1100010	62	b
	0100011	23	#	1000011	43	C	1100011	63	С
	0100100	24	\$	1000100	44	D	1100100	64	d
	0100101	25	%	1000101	45	E	1100101	65	e
	0100110	26	&	1000110	46	F	1100110	66	f
	0100111	27		1000111	47	G	1100111	67	g
	0101000	28	(1001000	48	H	1101000	68	h
	0101001	29)	1001001	49	I	1101001	69	i
	0101010	2A	*	1001010	4 A	J	1101010	6 A	j
	0101011	2B	+	1001011	4B	K	1101011	6B	k
	0101100	2C	,	1001100	4C	L	1101100	6C	1
	0101101	2D	-,-	1001101	4D	Μ	1101101	6D	m
	0101110	2E		1001110	4E	N	1101110	6E	n
	0101111	2F	/	1001111	4F	О	1101111	6F	0
	0110000	30	0	1010000	50	Р	1110000	70	р
	0110001	31	1	1010001	51	Q	1110001	71	\mathbf{q}
	0110010	32	2	1010010	52	R	1110010	72	r
	0110011	33	3	1010011	53	S	1110011	73	S
	0110100	34	4	1010100	54	Т	1110100	74	t
	0110101	35	5	1010101	55	U	1110101	75	u
	0110110	36	6	1010110	56	V	1110110	76	v
	0110111	37	7	1010111	57	W	1110111	77	w
	0111000	38	8	1011000	58	X	1111000	78	x
COSC2	0111001	39	9	1011001	59	Y	1111001	79	У
				5					

3

Definitions

- Computers are digital
- Signal: A way of conveying information – electrical voltage or current, radio waves, light
- To be transmitted, information must be transformed to electromagnetic signals.
 - Signals can be analog or digital
 - Digital transmission and Analog transmission

Analog signals (Telephone/Radio)

Digital signals (0/1 bit)

Digital Transmission

- Digital-to-digital conversion
 - Digital transmission of digital data
 - Converts sequence of bits to digital signals
- Encoding
 - Assigning a meaning to signals
 - A signal is worthless if no meaning is assigned
 - A different encoding gives a particular signal a different interpretation
 - NRZ, Manchester, Differential Manchester

Digital Transmission (cont.)

• NRZ Encoding

• How many 0s?

Figure 2.32 NRZ Encoding of a Sequence of 0s

Lecture 2 - Signals and encoding

Digital Transmission (cont.)

• Manchester and Differential Manchester

• Example:1001011

COSC244

Analog Transmission

- Modem: Modulator-demodulator
 - Converts digital to analog (Modulation)
 - Send the analog signal over telephone line
 - Receive the analog signal
 - Convert the analog signal to digital (Demodulation)
 - D/A and A/D Conversion
- Methods: FSK, ASK, PSK, QAM

• Analog signals can be distinguished by amplitude, frequency, and phase.

Lecture 2 - Signals and encoding

- Amplitude modulation
 - Amplitude shift keying (ASK): The amplitude of the carrier signal is varied to create signal element.
 - ASK is highly susceptible to noise interference

COSC244

Lecture 2 - Signals and encoding

• Can we send more than one bit at a time?

Amplitude Shift Keying (Four Amplitudes), Two Bits per Baud

- Frequency modulation
 - Frequency shift keying (FSK): Frequency of signal is varied to represent binary 1 or 0
 - FSK avoids most of the noise problems of ASK, but is limited by the physical capabilities of the carrier

COSC244

Lecture 2 - Signals and encoding

- Phase modulation
 - Phase shift keying (PSK): The phase of the signal is varied to represent different signal elements.
 - PSK is not susceptible to the noise degradation that affects ASK, nor to the bandwidth limitations of FSK
 - Constellation diagram

• PSK is limited by the ability of the equipment to distinguish small differences in phase (Why not combine PSK with ASK?)

COSC244

• Quadrature Amplitude Modulation (QAM): a combination of ASK and PSK

COSC244

Lecture 2 - Signals and encoding

 Variations of QAM are numerous. The example is 8 QAM, try design 16 QAM

Lecture 2 - Signals and encoding

- Bit Rate and Baud rate
 - Bit rate : the number of bits per second.
 - Baud rate : the number of signal elements per second. (Number of signal changes per second)
 - Bit rate = baud rate \times n
 - (n is Number of bits represented by each signal element)
 - In the analog transmission of digital data, the Baud rate is less than or equal to the bit rate
 - An analog signal carries 4 bits per signal element. If 1000 signal elements are sent per second, find the baud rate and bit rate. (1k bauds per second, 4kbps)

Modulating/Carrier/Modulated signals

- Modulating signal: information to transmit
- Carrier signal: base signal (high frequency) that device produces (to be changed by modulating signal)
- Modulated signal: carrier signal altered (characteristics changed) by the modulating signal.
- Frequency of the carrier signal is greater than the highest frequency of the modulating signal

Analog-to-analog conversion

- Analog-to-analog conversion is the representation of analog information by an analog signal.
- Use a high frequency signal to carry the information of a low frequency signal.

Analog-to-digital conversion

- Digital representation of analog data
 - Multimedia, music, movies, microphone, camera
 - Accurate replay of high quality analog signals
- Digitization: Analog signal is sampled, quantized and encoded as streams of bits.

Summary

- Data Representation
- Digital Transmission
 - Encoding Methods for Digital to digital conversion
- Analog Transmission
 - Modulation Methods for digital to analog conversion
- Analog-to-digital/Analog-to-analog conversion