Overview

e |.ast Lecture
— Data Transmission

e This Lecture
— Data Compression
— Source: Lecture notes

e Next Lecture
— Data Integrity 1
— Source : Sections 10.1, 10.3

Lecture 4 — Data Compression

Data Compression

e Decreases space, time to transmit, and cost

e Bit rate 1s limited, can we send fewer bits
and still deliver the data reliably? (Reduce
the number of bits while retaining its
meaning)

e Various approaches for data compression:
Huffman, Run Length, LZW

Huffman code

Huffman coding

-- an algorithm developed by David A. Huffman
while he was a Ph.D. student at MIT

a
b 111
c 1011
d 100
r 110
! 1010

Huffman code

e Variable length code based on the frequency of
character use.
— Most frequently used characters -> shortest codes
— Least frequently used characters -> longest codes

* A simple example
— Text — EEEEAEEBFEEE (ASCII 12 * 7 = 84 bits)
— E-0, A-100, B-101, F-110
— Code — 000010000101110000 (18 bits)

Hutffman Code (cont.)

https://en.wikipedia.org/wiki/Huffman_coding#/media/File:Huffman_huff_demo.gif
Video: https://www.youtube.com/watch?v=MIleGSpPpHXs

Huffman code: Code formation
-Assign weights to each character

-Merge two lightest weights 1nto one root node
with sum of weights (why binary tree?)

-Repeat until one tree 1s left

-Traverse the tree from root to the leaf (for each
node, assign O to the left, 1 to the right)

Lecture 4 - Data compression

Hutffman Code (cont.)

Text: ABECADBC....

LETTER
A
B
C
D
E
LETTER CODE
A 01
B 110
C 111
D 10
E 00

FREQUENCY
25%
15%
10%
20%
30%

ALTERNATE
CODE

10
010
011

11

00

TilE

A B C D E A B C D E
25 AS A0 20 30 Weights: 25 25 20 30

(a) Initial tree (b) After 1 merge

25 45 30 Weights: 55 A5

(c) After 2 merges (d) After 3 merges

B C

{e) After 4 merges

Hutffman Code (cont.)

 Huffman code: Code Interpretation

— No prefix property (Restriction): The code for
any character never appears as the prefix or start
of the code for any other character. (guarantees
the codes can be translated back)

— Receiver continues to receive bits until it finds a
code and forms the character

— 01110001110110110111 (extract the string)

Lecture 4 — Data compression

Hutffman Code (cont.)

Huffman code steps:

*To each character, associate a binary tree consisting of
just one node. To each tree, assign the character’s
frequency, which is called the tree’s weight.

*[Look for the two lightest-weight trees. If there are
more than two, choose among them randomly. Merge
the two into a single tree with a new root node whose
left and right sub trees are the two we chose. Assign the
sum of weights of the merged trees as the weight of the
new tree.

*Repeat the previous step until just one tree 1s left.

Lecture 4 — Data compression

Run Length Encoding
(Character-Level)

e Used for character data only

* Send an alternating set of numbers and
characters.
 Example

— HHHHHHHUFFFFFFFFFFFFFE
— TH1U14F

Video: https://www .youtube.com/watch?v=ypdNscvym_E

Lecture 4 — Data compression

Run Length Encoding
(Bit-Level)

Consider a picture of the letter T.

T

70-90% of the space 1s white space, which means
many continuous zeroes to be transmitted.

Group the runs of zeroes and send their length
instead.

Lecture 4 — Data compression

Run Length Encoding
(Bit-Level cont.)

e Decide the number of bits to represent a run length.

* Encoding algorithm (4 bit lengths)
— Count the number of Os between two 1s
— If the number i1s less than 15, write it down in binary form.

— If 1t 1s greater than or equal to 15, write down 1111, and a
following binary number to indicate the rest of the Os. If more
than 30, repeat this process.

— If the data starts with a 1, write down 0000 at the beginning.
— If the data ends with a 1, write down 0000 at the end.
— Send the binary string.

Lecture 4 — Data compression

Run Length Encoding
(Bit-Level cont.)

Decoding algorithm:
Group all the bits into 4-bit groups.
1. For each 4-bit group, write down that number of
Os.
2. If at the end of the bit string, stop.

3. If not at the end of the bit string:

If the 4-bit group was less than 15, write down a 1. Go to
step 1.

If the 4-bit group 1s 15, go to step 1.

Lecture 4 — Data compression

Run Length Encoding
(Bit-Level cont.)

Figure 3.33 Stream Prior to Compression and Run-Length-Encoded Stream

016 . . . 0110 . . . 010 . . . 01186 . . . @ 91 bits

\”/ \/\/\/t\/

Bit stream

Number of Os
in run

no (s no Os

{a) Stream prior to compression

Run lengths (binary) 11160 1001 0000 1111 @181 1111 1111 0000 0000 1011 40 bits

Run lengths (decimal) 14 9 0 15 5 15 15 0 0 11

(b) Run-ength-encoded stream

Lecture 4 — Data compression

Lempel-Ziv Compression

* In text, phrases or entire words are
repeated very often.

e ook for repeated strings. Store them and
a code 1n a dictionary.

* In the output, replace these repeated
strings with the code.

* 71p, unzip, compress command in Unix.

Lecture 4 — Data compression

Lempel-Z1v Compression (cont.)

e From Crichton, M. Jurassic Park.

The tropical rain fell in drenching sheets, hammering the
corrugated roof of the clinic building, roaring down the metal
gutters, splashing on the ground in a torrent.

* Some repetitions:
— the - #
~10-$
— Ing - %
—en-&

rr*

Lecture 4 — Data compression

Lempel-Z1v Compression (cont.)

The tropical rain fell in drenching sheets, hammering the
corrugated roof of the clinic building, roaring down the
metal gutters, splashing on the ground in a torrent.

#t$pical rain fell in dr&ch% sheets, hammer% #co*ugated
$of of #clinic build%, $ar% down # metal gutters, splash%
on #g$und in a to*&t.

Lecture 4 — Data compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

Add all possible character codes to the dictionary
w=""
for (every character ¢ in the incoming data) {
if ((w + ¢) exists in the dictionary) {
W =W +C;
}else {
add (w + ¢) to the dictionary;
add the dictionary code for w to output;
W = C;
}
s

add the dictionary code for w to output;
display output;

Lecture 4 — Data Compression

Lempel-Ziv-Welch (LZW)
algorithm

A dictionary is 1nitialized to contain all the single characters.

Scan through the input string for successively longer
substrings (w+c) that 1s not in the dictionary.

When such a string (w+c) 1s found, the index for the string
less the last character (i.e., the longest substring that is in the
dictionary, w) 1s sent to output.

The new string (including the last character, w+c) 1s added to
the dictionary with the next available code.

The last input character (c) is then used as the next starting
point to scan for substrings.

Lecture 4 — Data Compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

Dataa b b.a.a bbaababb.aaaabaabb.a
1 | L L L L L L L

| 1 1 1 |

Dicthionat y
Index | Entry [ndex | Entry
3 ' Db a a
b a b a
abd abba
b b a a a
D a a abd
a a Db a a b
abbd b a

Lecture 4 — Data Compression

Lempel-Ziv-Welch (LZW)
algorithm (cont.)

* No need to send the dictionary except the
initial encoding for the alphabet letters.

* Need to agree on the initial coding between
the sender and the receiver.

* The dictionary can be reconstructed as
decompression 1s done.

Lecture 4 — Data Compression

Summary

 Huffman encoding
* Run-length encoding

 Lempel-Ziv Compression

