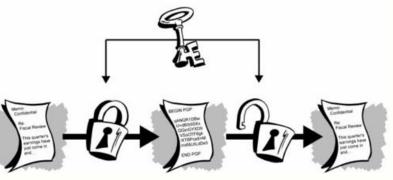
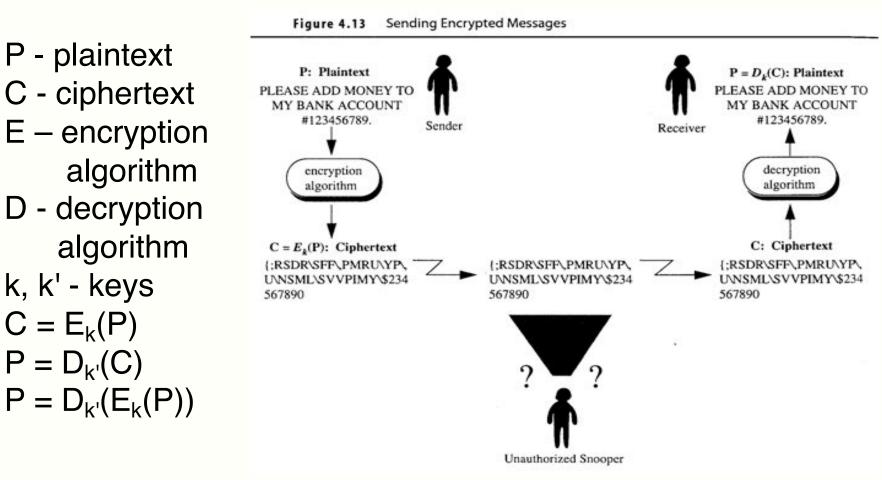
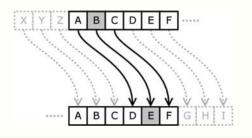

Overview


- Last Lecture
 - Data Integrity 2
- This Lecture
 - Data Security 1
 - Source: Sections 31.1, 31.2
- Next Lecture
 - Data Security 2
 - Source: Sections 31.2-31.3

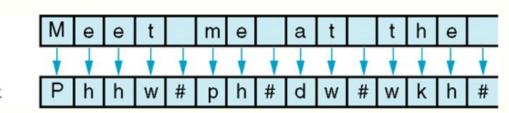

Introduction

(demo video: Encryption and decryption)

- Data security
 - How to prevent someone else from knowing the contents of a message while it is being transmitted
- Encryption transform information into a different, unintelligible form
- Decryption restore the original information from the encrypted form
- Plaintext original data
- Ciphertext encrypted data


Example

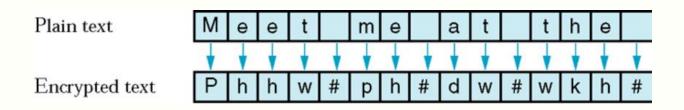
Caesar Cipher


(demo video: Caesar Cipher)

- Shift of character values
 - Example: A = A + 3, B = B + 3,... for ASCII
 - Decrease each code by 3 to decrypt it
 - What is the key?
- Various keys can be used
 - E.g. shift to the next character on the keyboard

Plain text

Encrypted text



Problems with Caesar Cipher

- Easy to break by guessing frequently occurring letters
 - E, T, O A, N, and space are frequently used.
 - If you can guess the space character, then you can have a go at guessing short words such as 2-4 character words.
 - Probable patterns can help.
 - TO, THE, OF, etc.

Polyalphabetic Cipher

- Idea is to change the letter frequency so a given plaintext character is not always replaced by the same ciphertext character.
- Create an alphabet matrix as shown on the next slide.
- Let i be the position of a given character in the plaintext message.
- Let j be the position of a given character in the alphabet
- Replace the character with M[(i mod 26), j]

Polyalphabetic Cipher (cont.) (demo video: Turkey)

Key for Vigenère Cipher

row 0:	A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	Ρ	Q	R	S	Т	U	۷	W	χ	Y	Ζ
row 1:																										
row 2:	C	D	E	F	G	Н	I	J	K	L	М	N	0	P	Q	R	S	Т	U	۷	W	Х	Y	Z	A	В
row 3:	D	E	F	G	Η	I	J	K	٤	Μ	N	0	P	Q	R	S	T	U	۷	W	X	Y	Z	A	B	С
		!																1								
		i																1								
ow 24:	Y	Z	A	B	с	D	E	F	G	H	I	J	K	L	Μ	N	0	Ρ	Q	R	S	т	U	۷	W	Х
ow 25:	Ζ	A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	Ρ	Q	R	S	Т	U	۷	W	Х	Y

Example

- Example
 - Plaintext:THETHE....THE
 - Assume the first THE starts at position 25, the second THE starts at position 54, and the third THE starts at position 104
 - Ciphertext: ...SHF...VKI...TIG

Example (cont.)

Table 4.3	Letter Substitu	Letter Substitutions Using the Vigenère Cipher													
	PLAINTEXT LETTER	i = (RELATIVE POSITION IN MESSAGE)	<i>i</i> mod 26	j Relative position in alphabet	CIPHERTEXT LETTER										
	Т	25	25	19	S										
	н	26	0	7	н										
	E	27	1	4	F										
	т	54	2	19	v										
	н	55	3	7	K										
	E	56	4	4	I										
	Т	104	0	19	Т										
	н	105	1	7	I										
	E	106	2	4	G										

"It also assumes that the letters correspond to consecutive binary codes such as in the ASCII code.

Polyalphabetic Cipher (cont.)

Key for Vigenère Cipher

	row 0:	A	В	С	D	E	F	G	H	I	J	K	L	М	N	0	Ρ	Q	R	S	Т	U	۷	W	Х	Y	Z
	row 1:	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Ρ	Q	R	S	Т	U	۷	W	Х	Y	Ζ	A
	row 2:	C	D	E	F	G	Н	I	J	K	L	Μ	N	0	P	Q	R	S	Т	U	۷	W	Х	Y	Ζ	A	B
	row 3:	D	E	F	G	Η	I	J	K	٤	М	N	0	P	Q	R	S	Т	U	۷	W	х	Y	Z	A	В	С
			I.																1								
			١																٢								
			!																!								
			ċ																1								
r	ow 24:	Y	Z	A	В	С	D	Ε	F	G	H	I	J	K	L	Μ	N	0	Ρ	Q	R	S	T	U	۷	W	Х
r	ow 25:	Ζ	A	В	С	D	E	F	G	H	Ι	J	K	L	M	N	0	Ρ	Q	R	S	Т	U	۷	W	Х	Y
																									_		

Problems of Polyalphabetic Cipher

- Can break by using some clues
 - Letters in TIG are alphabetic successors to the letters in SHF
 - S and H, V and K, T and I all have the same difference

Transposition Cipher

- Idea: Rearrange the plaintext of a message.
- Step1: Store the plaintext message in a 2 dimensional array.
- Step2: Send the columns out of order.
- Example :
 - Message: MISS PIGGY KERMIT ANIMAL AND FOZZIE BEAR
 - Send columns 2, 4, 3, 1, 5
 - IIKTMNZBSGRAL IASGE ADZEMP IIAO YMN FER is sent

	COLUI	NN NU	JMBER	5
1	2	3	4	5
М	I	S	S	
Р	Ι	G	G	Y
	к	Е	R	M
I	Т		Α	N
I	М	Α	L	
A	Ν	D		F
0	Z	Z	I	Е
	в	Е	A	R

Data Security 1

Problems of Transposition Cipher

- Letter frequencies are preserved.
- Letter frequencies matches what we expect.
 - Implies substitution was not used
 - Hints that a transposition cipher was used
- Try column arrangements yielding common sequences such as ING, THE, IS . . .

Bit-Level Cipher

- Not all data are characters
- Define a bit pattern as an encryption key.
- Perform an XOR between the data and key.
- Send the result.
- To decrypt, perform the same process

Figure 4.16 Encryption Using Exclusive OR Bit Operation

1101100101001	Plaintext
1001011001010	Encryption key
0100111100011	Ciphertext = plaintext exclusive-or'd with the encryption key
1001011001010	Decryption key (same as the encryption key)
1101100101001	Plaintext = ciphertext exclusive-or'd with the decryption key

Problems with Bit-Level Cipher

- Short keys may result in repeated substrings
 Helps break pattern
- One time pad
 - Each key is used only once
 - Extreme case Key length is equal to the original string length
 - Distribution of keys is difficult

Questions?

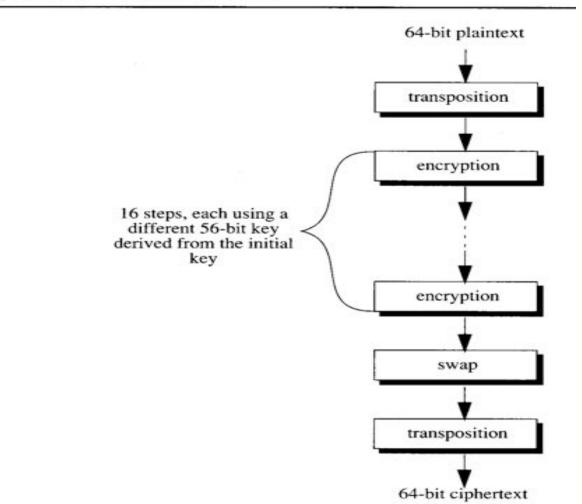
- Substitutions: Caesar/Polyalphabetic cipher
- Transpositions: Transposition cipher
- exclusive-OR operations: Bit-level cipher
- What is most important for Encryption
 - Good Locks! (Simple vs. Complex Encryption Algorithms)
 - Nice Keys! (Short vs. Long keys)
 - such that the Hackers can not break it!

Data Security 1

Drawbacks of Traditional Encryption

- Methods so far are not very complex.
- With short keys, they are not good and contain clues to aid in breaking the code.
- Longer keys makes the ciphertext more cryptic, but distribution of keys (especially large ones) is unwieldy.
- An alternative approach uses shorter keys but more complex procedures DES

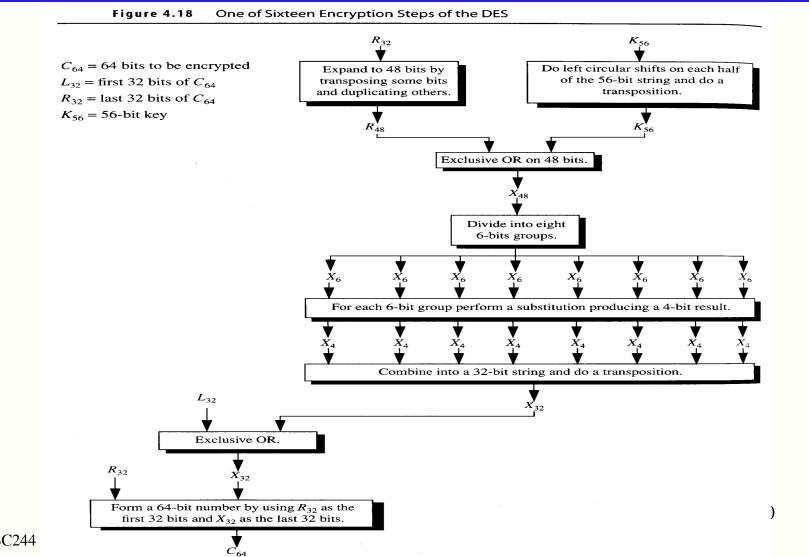
DES


(Data Encryption Standard)

- Developed by IBM in the early 1970's
- Adopted as a standard by US government in 1977 for all commercial and non-classified use
- Divided into 64-bit blocks, uses a 56-bit key
- The algorithm is a complex combinations of transpositions, substitutions, exclusive-OR operations, and other processes to produce 64 bits of encrypted data.

DES (cont.)

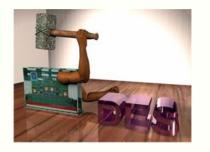
demo: http://www.formaestudio.com/rijndaelinspector/archivos/Rijndael_Animation_v4_eng.swf https://www.youtube.com/watch?v=H2LlHOw_ANg


Figure 4.17 Outline of the DES

COSC244

19

One Step of DES


COSC244

Worries Behind DES

- Some say it is not sufficiently secure
 - Some think it can be broken in a few hours on a massively parallel computer
- IBM originally used a 128-bit key.
- The National Security Agency (NSA) asked for it to be changed to 56-bits without public explanation

– Guess: easy for NSA to break?

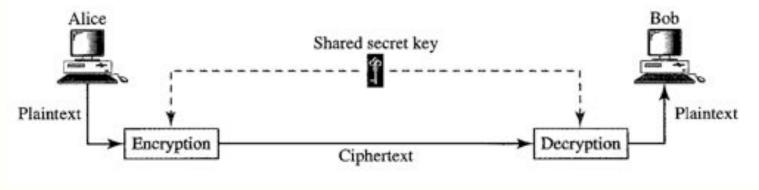
- 56-bit key is relatively short and has $2^{56} \approx 7 * 10^{16}$ possible key values
- The rationale behind the substitutions in the algorithm were never fully explained

DES Cracker

https://en.wikipedia.org/wiki/EFF_DES_cracker

- DES uses a 56-bit key- 2⁵⁶ possible keys
- One of the major criticism of DES was that the key size was too short
- In 1998, the EFF built "DES Cracker" for \$250,000
- brute force search of DES cipher's key space
- 1998, DES Challenge II 56 hours of work, winning \$10,000
- 1999, DES Challenge III 22 hours and 15 minutes, winning another \$10,000
- DES: the key-space is relatively small

Variations of DES


- Triple-DES (3DES)
 - Uses the DES encryption algorithm three times with two different keys
 - Used by financial institutions to extend the life of DES
 - Increased the key size: 3*56=168-bit, but too slow
- AES (Advanced Encryption Standard)
 - Announced as a standard in 2002 and now used worldwide

Size of Data Block	Number of Rounds	Key Size
	10	128 bits
128 bits	12	192 bits
	14	256 bits

Table 30.1	AES configuration
------------	--------------------------

Private Key Encryption

- Symmetric-key: the same key (<u>Secret key</u>) is used by the sender and receiver. The key is shared.
 - Caesar cipher, Transposition ciphers, DES introduced in this lecture
 - Key is very important in these methods. The secrecy of the key must be protected
 - These methods are called private key encryption

4

Data Security 1

Private Key Encryption

- The best encryption method in the world is no good if the key cannot be kept secret.
- How does the sender communicate the key to the receiver?
 - Sender send the key: what if an unauthorized receiver gets it?
 - Encrypt the key: same problem?
 - Can we make the encryption key public while still making the encrypted message secure? (next lecture)

Summary

- Principles of encryption and decryption
- Functional expression
- Caesar cipher
- Polyalphabetic cipher
- Transposition cipher
- Bit-level cipher
- DES