Week 6 Lab - Encryption

COSC244

1 Introduction

In lectures and tutorials, you have seen a number of ways to encrypt and decrypt informa-
tion. During this lab, you will write programs to implement two of the simplest encryption
techniques: Caesar cipher and bit-level cipher.

Both of these programs are short, but need a bit of thought to implement correctly. The
Caesar cipher program should take less than 10 lines of code, while the bit-level cipher is
closer to 20 lines. However, these numbers are given only as a guide, your solution may be
longer or shorter.

There is an extension exercise of implementing either a polyalphabetic or a transposition cipher
for those who complete the first two programs and want something more challenging. It is not
required to get full marks for this lab.

2 Assessment

This lab is worth 1%. The marks are awarded for the written answers to the preparation
questions (worth 0.5%) and completing two programming exercises (worth 0.5%).

The preparation questions should be answered before coming to the lab. They should be
stored electronically in a plain text file with a .txt suffix in your ~/244/06 directory. They
will be checked by the demonstrators at the start of the lab.

Make sure you get your work signed off by a demonstrator before leaving the lab.

3 Preparation

3.1 Exclusive OR

The bit-level cipher makes use of the exclusive OR operator. This cipher can be used on binary
files as well as text files. Let’s first determine the symbol for the Java exclusive OR operator.

Open the course web page, click on Resources, click on Learning the Java Language, click on
Language Basics, and finally click on Bitwise and Bit shift Operators.

Q1 What is the symbol for the exclusive OR operator in Java?



3.2 FileInputStream
Let’s look at the input/output classes we will use to read and write data for the second
program. Remember that a bit-level cipher is suitable for binary data as well as character

data. This means that we cannot easily use the Scanner class. We need to use classes that
read data byte by byte.

Open the course web page, click on Resources, click on Java API Documentation, click on
FileInputStream in the java.io package.

Q2 What is this class meant for?

Q3 Write a statement that uses a constructor to create a new FilelnputStream and opens a
file for reading.

Q4 What method do you use to read a single byte? What does it return?

3.3 FileOutputStream

Now let’s look at FileQutputStream. In your web browser, click on FileOQutputStream.

Q5 What is this class meant for?

Q6 Write a statement that uses a constructor to create a new FileOutputStream and opens a
file for writing.

Q7 What is the signature of the method which writes single bytes?

Q8 What method should you call when you are finished writing output?

3.4 Command line arguments

You might find the Command-Line Arguments section of the Java Tutorial helpful when
answering the next question if you haven’t used command line arguments before. There is
a link to this section under Resources on the course web page.

Q9 Both of the programs you will implement require you to use the command line arguments.
To get some practice with this, write a program (you don’t have to compile it) which
takes two arguments. The first argument should be a word and the second argument
should be a number which determines how many times to print out the word.



4 Programming Exercises

4.1 Caesar Cipher

The first program you write will implement a Caesar cipher. Encrypting data using a Caesar
cipher involves replacing each character with a character which is a set distance away (in the
character set) from it. For example if you were encrypting the word "and" using a shift of 3,
it would become "dqg".

A caveat - Depending on the amount of the shift and the value of the character being shifted, it
is possible the shifted result would be larger than would fit within a byte. You must correctly
deal with this situation. Hint: use modulo arithmetic with your shifting to wrap around if
the result is larger than an 8-bit number (i.e. > 255). Write your solution in a file called
Caesar. java so that it can be easily tested using the script caesar-check.

Since you are reading and writing character data, you can use System.in as your InputStream
and System.out as your QutputStream. Write a program which takes a command line argument
to determine the size of the shift, reads input from System.in, and sends the encrypted output
to System.out. You should be able to encrypt and decrypt data, and check that it worked using
the command diff like this (or you can run the caesar-check script which does basically the
same thing):

$ java Caesar 3 < input.txt > encrypted.txt
$ java Caesar -3 < encrypted.txt > decrypted.txt
$ diff input.txt decrypted.txt

You can put a | character immediately after the > character in the commands above to
overwrite an existing file. The diff command should not show any differences. If the diff
program does not find any differences, it does not produce any output and you get the Unix
prompt back. If there are differences in the two files, it will list them.

4.2 Bit-Level Cipher

Encrypting data using a bit-level cipher involves taking an encryption key, let’s say a simple
string, and performing an XOR (exclusive OR) operation between each byte in the key and the
corresponding byte in the information to be encrypted. If the encryption key is shorter than
the data, then just loop back to the start of the encryption key and continue the process until
all data has been encrypted. To decrypt the encrypted data, simply repeat the encryption
process, since performing two XORs with the same key will return the original value.

A caveat - Think carefully about what the first sentence above means. You are reading data
byte by byte and doing an XOR between the input byte and a particular byte of the key. So
you need to keep track of where you are in the key.

Another caveat - Think carefully about what the second sentence above means. You will run
past the end of the key and need to deal with that situation. We will test with input large
enough to go past the end of the key.

Write a program to implement a bit-level cipher. The first argument to the program is the
name of a file to use as an input stream. The second argument to the program is the name of a
file to use as an output stream. Prompt for the encryption/decryption key and use a Scanner
class to read the key. You should be able to run your program and check the output like this:



java BitLevel input.txt encrypted.txt
Enter key:

java BitLevel encrypted.txt decrypted.txt
Enter key:

diff input.txt decrypted.txt

The diff command should not show any differences. There is a script called bitlevel-check
which does basically the same thing. Once you completed both programs ask a demonstrator
to check your work.

4.3 Extra challenge - Polyalphabetic or Transposition Cipher

This program is not required to get full marks for the lab. It is for those who complete the
above tasks and want something more challenging.

Try implementing either a polyalphabetic cipher or a transposition cipher. If you choose the
transposition cipher, to keep things simple, do not worry about changing the order of the
columns. You probably will not have time to finish this exercise during the lab. If you do get
one of these implemented, ask a demonstrator to check that it works correctly.



	Introduction
	Assessment
	Preparation
	Exclusive OR
	FileInputStream
	FileOutputStream
	Command line arguments

	Programming Exercises
	Caesar Cipher
	Bit-Level Cipher
	Extra challenge - Polyalphabetic or Transposition Cipher


