Week 7 Lab - Introduction to TCP

COSC244

1 Introduction

A computer network is an interconnected collection of computers and other devices which are
able to exchange information. Machines which make up a network are often called nodes. If a
node is an autonomous computer, it is often called a host.

During the next few labs, we will be writing programs which can send information between
multiple hosts on a network. You can send information between two terminal windows on
the same machine. You can also communicate with a friend in the lab (once both of your
programs are functioning).

2 Assessment

This lab is worth 1%. The marks are awarded for the written answers to the preparation
questions (worth 0.5%) and completing two programming exercises (worth 0.5%).

The preparation questions should be answered before your scheduled lab time. They should
be stored electronically in a plain text file with a .txt suffix in your ~/244/07 directory. They
will be checked by the demonstrators at the start of the lab.

3 Introduction to Networks

In lectures, you were introduced to the OSI layered protocol model which consists of seven
layers. The Internet (which is the network we are using) has four layers. They are shown in
Figure 1. The Internet model combines the OSI Application, Presentation and Session layers
into the Application layer. Usually we consider the OSI Physical and Datalink layer to be the
Host-to-Network layer.

The reason we separate networks into layers is to make changes and modifications easier. Each
layer performs a separate function and can have a design independent of other layers. As long
as a layer meets the interface specifications of the layers immediately above and below it, its
internal details can change without other layers being affected. This is similar to the concept
of modular program design.

3.1 Protocols

The most widely used Network layer protocol is the Internet Protocol (IP). You will learn
more details about it in lectures. For now it is sufficient to say that IP specifies a datagram
service between nodes. Delivery is not guaranteed, corruption may occur in transit, packets
may arrive in a different order, and individual packets may travel different routes to their
destination.

User

i

Application (Application, Presentation, Session)
A
L
Transport (Transport)
A
Y
Internet (Network)
A
Y
Host—to—Network (Data link, Physical)

i

Transmission Medium

Figure 1: TCP/IP Network Layers

The Transport layer protocol we use in the labs is called the Transmission Control Protocol
(TCP). It is known as a reliable protocol because it guarantees the order and integrity of
packets delivered. In lectures you will learn about another Transport layer protocol called
User Datagram Protocol (UDP) which is known as an wunreliable protocol. It provides no
guarantees about the delivery of packets or their arrival order.

3.2 Addresses

Every node, connected to an IPv4 (Internet Protocol version 4) network has a unique four
byte address. This address is represented in dotted-quad format. For example, the email server
(chasm.otago.ac.nz) has the IP address 139.80.32.68. Nodes on the Internet also have an IP
name. The email server’s IP name is chasm.otago.ac.nz. The form of this name is called the
fully-qualified name. You can use this name to get to the machine from anywhere. If you are
within the university network, you can refer to it simply as chasm.

A node’s IP name and IP address are tied together. In lectures, you will learn how this is
accomplished. The main reason for IP names is for us humans. It is easier to remember
chasm.otago.ac.nz than to remember 139.80.32.68.

3.3 The Lab Machines

Each of the machines in the Linux lab has an IP name and an IP address since they are
connected to the network. The names of the machines are of the form, oucsNNNN, where
NNNN is a 4 digit number. You can determine the IP name of the machine you are using in
one of two ways:

e On the top right of the screen, there is a sticker with the name of the computer printed
on it.

e At the command line, type hostname. Linux will respond with the fully-qualified name
of your machine.

Remember if you are on the university network, you only need the first part of the name.
All computers have a special name called localhost which refers to itself. Your computer is
localhost to you; your friend’s computer is localhost to her or him. If you want to communicate
with your friend’s computer, you must refer to it by its oucsNNNN name.

3.4 Ports

While it is necessary to know the IP name to communicate with another computer, that is not
sufficient to complete the plot. At any time, you might have one or more web browser windows
open, maybe some chat sessions, maybe ssh or sftp sessions, or other programs communicating
with remote computers. Just delivering a packet to your computer does not tell the operating
system what to do with it. We need a way to specify what application to give the packet to.

The way to specify the application is by means of a port number. Each instance of an appli-
cation which communicates via the network will have a unique port number. These numbers
range from 1 to 65535. They are logical constructs only. They are not physical entities like
serial or parallel ports. The operating system associates a network application to a given port
number.

More details about port numbers will be covered in lectures. What you need to know for the
labs is that you can use ports 7700 - 7800. Other port numbers are reserved for well-known
applications or are blocked for security reasons.

3.5 End-to-End Communications

We will concentrate on communications between applications you write, so we will work at
the application layer. The application for this lab allows one side to type messages to the
other side. Modifications will be made to the application in subsequent labs to enhance its
capabilities. Ultimately you will end up with a basic chat program.

The combination of a port number and an IP address makes up what is called a socket. A socket
is an abstraction of an endpoint for sending and receiving data. See Figure 2. The network and
operating systems transfer packets between the socket for the application program running on
Host1 and the socket for the application program running on Host2 and vice versa.

Hostl Host2
G
2
Application _— Z — Application
Program [i Program
Socket Socket

Figure 2: Applications Communicating via Sockets

There is a certain startup sequence that must be followed for an application on two different
hosts to communicate. One host’s application must start first, and it must use a port known
to the other host’s application. Then the second host’s application starts and specifies the
port number chosen by the first host.

Referring to Figure 2, let’s assume the application on Hostl starts first and specifies port
7772 on startup. At this point in time, the application will be listening on port 7772 for an
application to connect to it. It just sits there patiently listening (and computers can be very
patient).

Assume a user on Host2 wants to communicate with Hostl. The user on Host2 starts the
application and specifies the IP name of Host! and the port number of the application (in
this case 7772). 7772 is the number of the port on Hostl. The port number that Host2’s
application actually uses is chosen by the operating system. There are ways you can find out
the port number, but it is not important for the two applications to communicate.

There can be a variation of the above scenario. Instead of communicating between two different
hosts, it is possible for the applications to communicate when running in two terminal windows
on the same machine. That is what we will do in this lab. It is also what you will do as you
create and debug your programs. To run both sides on the same machine, simply specify
localhost as the TP name when you start the second application.

4 Preparation

Let’s begin by looking at 5 major classes which you will be using for communication: Input-
StreamReader, BufferedReader, PrintWriter, Socket, and ServerSocket.

4.1 InputStreamReader

Open the course web page, click on Resources, click on Java API Documentation, click on
InputStreamReader in the package java.io.

Q1 What is this class meant for?

Q2 What does the explanation say to do for best efficiency? Write the suggested statement.

4.2 BufferedReader

Click on BufferedReader. You know from reading about InputStreamReader that this class
makes reading character strings more efficient.

Q3 What method do you use to read a line from an input stream? What does it return?

4.3 PrintWriter

Click on PrintWriter. This class allows one to print formatted representations of objects to a
text-output stream. When we are sending data over the network, our output stream will be a
socket.

Look at the constructor with the following form:
PrintWriter (OutputStream out, boolean autoFlush)

If autoFlush is set to true, output will be done when one of the println, printf, or format
methods is invoked, rather than only when flush() or close() is called.

Q4 What does the method, printin(String x) do? What does it return?

4.4 ServerSocket

The Socket and ServerSocket classes are in the package called java.net.

In the upper left of the web browser, click on java.net. Then click on ServerSocket. Read the
first paragraph. More will be said about client-servers later. For now, you need to know that
the server is the program that must start first. Once it starts, it waits for a ‘client to start
and connect to it.’

Q5 What does the constructor ServerSocket(int port) do?

Q6 What does the method accept() do? What does it return?

4.5 Socket

Now click on Socket. Notice this class is for client sockets. The client starts after the ‘server’
starts. Remember from section 3.5 the client program must specify the IP name and port
number of the server.

Q7 Which constructor do you think is the most appropriate?

Q8 What does the method getInputStream() return?

Q9 What method would you use to have a socket use an QutputStream?

4.6 Date

The first program you write in the lab will be a modification of a program we provide. You
need to be able to get the current date and time. To do so, you can use the java.util. Date
class.

In the upper left of the web browser, click on java.util. Then click on Date.

Look at the default constructor Date().

Q10 When you use the default constructor to create an instance of Date, what is it initialized
with?

Q11 Write the code fragment required to print the current date and time to standard output.

4.7 TCPExample Program

We are providing a single program that performs both the client and server functions. In
this case, the ‘client’ sends text to the ‘server’ which receives it and prints it on the screen.
We may refer to the client as the sender and the server as the receiver. Which function the
program performs is determined by the command line parameters used to start the program.
The program is called TCPEzample. The server (receiver) is started by typing:

java TCPExample 7777

This command tells the server to start up and begin listening on port 7777 for a client to
connect.

When running on the same machine as the server, the client (sender) is started by typing:
java TCPExample 7777 localhost

This command tells the client to start up and to connect to whatever application is listening
on port 7777 of the local machine. In this case, that application is the expected server.

The port number can be any number 7770 - 7779. Both the client and server must use the
same port number.

The source code listing for the program is attached to the end of this document. Let’s examine
the program.

Line 2 imports the java.net classes which includes Socket and ServerSocket. Line 7 declares
output to be PrintWriter. It will be used to write data to a socket. Line 8 declares input to
be BufferedReader. It will be used to read data from a socket.

Lines 10 - 14 are the constructor for the TCPEzample class. It is passed a Socket. Line 11
sets output to be a socket output stream with a PrintWriter wrapped around it. Line 12 sets
input to be a socket input stream with a BufferedReader wrapped around it.

Skip down to the main() method beginning on line 31. Since some network functions may
fail, we need to use a try-catch block. This also takes care of the possibility the user did not
use the correct parameters on the command line. Line 32 declares a variable called socket to
be an instance of Socket. Line 34 initialises port to the first command line parameter.

The if-else statement determines if the program is starting as a client (sender) or a server
(receiver). First let’s consider the server code first which is lines 41-46. Line 41 declares
serverSocket to be an instance ServerSocket attached to the port number entered on the
command line. Line 42 outputs a message that the receiver is waiting for someone to connect
to it. Line 43 calls the accept() method. The program waits at this point for a client to connect
to it.

Once a client connects, the accept() method returns. Since accept() returns a Socket it is
assigned to socket, and the program continues. Line 44 prints a message that it accepted a
connection on the port. Line 45 creates an instance of the TCPFEzample class called ezample.
Line 46 invokes the startReceiving() method.

Lines 16-21 are the startReceiving() method. It is simply a while loop that invokes the read-
Line() method on input and outputs what it read to System.out. Remember input is attached
to our socket.

Let’s return to main(). If the user enters a port and an IP name, the if part of the if-else
statement is executed. This is lines 36-39. Line 36 declares socket to be a Socket connected
to the host at the IP name and port number specified on the command line. Assuming the
connection was made, line 37 outputs text stating the host name and port connected to.

Line 38 creates an instance of the TCPFEzample class called erample. Line 39 invokes the
startSending() method.

Lines 23-29 are the startSending() method. Line 24 creates a Scanner to read data from the
keyboard. Line 25 outputs a prompt. Lines 26-27 are a while loop that reads a line from the
keyboard and outputs it to the socket.

The program is terminated by typing ctrl-D at the client (sender) end.

If there is an exception when first running the program, it is most likely that the user did not
run the program correctly from the command-line.

Q12 In the Usage error message, what is meant by <port> [host]?

5 Programming Exercises

5.1 Try It Out

Type the program into a file and then save it. Compile the program by typing:
javac TCPExample. java

Make sure you have two terminal windows open and cd both of them to the directory you are
working in. Start the server by typing:

java TCPExample 7770

You can use any number 7770 - 7779. The message, ‘Waiting for someone to connect’ should
appear. The program is waiting for someone to connect to it.

In the other terminal window, start the client by typing:
java TCPExample 7770 localhost

The client will respond that it connected and output a prompt. The server will respond that
it accepted a connection.

Type some lines into the client and they will appear in the server’s window. Terminate the
programs by typing ctrl-D in the client window.

5.2 Program 1

Once you are comfortable running and using the program, copy TCPExample.java to another
file. Make the following modifications.

e Modify the receiver part of the program to send the current date and time back to the
sender whenever it receives a line of text.

e Modify the sender part of the program to read and print out the date and time it gets
sent.

You cannot test the program until you have made both modifications.

HINT: Your program already contains code which is able to send data to and receive data
from a socket.

5.3 Program 2

Copy Program 1 to another file. Modify this program so the receiver can read a line from
standard input and send it instead of the date and time.

At this point your program can perform primitive communications between two different com-
puters. In order for this to work however, you must alternate the sending of messages.

Make sure you get your work signed off by a demonstrator during lab time.

To be continued in the next lab. . .

Source code listing of TCPExample.java.

0 O Uik Wi

U OU UL UU b s s b b s B B R D W W W W W W W WwWWwhNNDDDNDNDDNDND = b e e s
W OO TR WNNRFE OO UURE WNFRF OO Ulk WD O OO Utk W = O o

import java.io.*;
import java.net.x;
import java.util.*;

public class TCPExample {

private PrintWriter output;
private BufferedReader input;

public TCPExample(Socket socket) throws Exception {
output = new PrintWriter(socket.getOutputStream(), true);
input =
new BufferedReader (new InputStreamReader (socket.getInputStream()));

public void startReceiving() throws Exception {
String line;
while ((line = input.readLine()) != null) {
System.out.println(line);
}
}

public void startSending() {
Scanner stdin = new Scanner(System.in);
System.err.println("Please enter data here");
while (stdin.hasNextLine()) {
output.println(stdin.nextLine());
}
}

public static void main(String[] args) {
Socket socket = null;
try {
int port = Integer.parselnt(args[0]);
if (args.length > 1) {
socket = new Socket(args[1], port);

System.err.println("Connected to " + args[1] + " on port " + port);

TCPExample example = new TCPExample(socket);
example.startSending() ;
} else {
ServerSocket serverSocket = new ServerSocket(port);
System.err.println("Waiting for someone to connect");
socket = serverSocket.accept();
System.err.println("Accepted connection on port " + port);
TCPExample example = new TCPExample(socket);
example.startReceiving() ;
}
} catch (Exception e) {
e.printStackTrace() ;
System.err.println("\nUsage: java TCPExample <port> [host]");
}

10

	Introduction
	Assessment
	Introduction to Networks
	Protocols
	Addresses
	The Lab Machines
	Ports
	End-to-End Communications

	Preparation
	InputStreamReader
	BufferedReader
	PrintWriter
	ServerSocket
	Socket
	Date
	TCPExample Program

	Programming Exercises
	Try It Out
	Program 1
	Program 2

