
Filesystems
COSC301 Laboratory Manual

This lab should be reasonably relaxed, assuming you read the lab before you come to class.
Hopefully you have started working on your first assignment by now when you have time. We
will have a stroll around the standard Unix file hierarchy on your virtual machine Client1,
and study some of the things we find there. For people familiar with the Unix file system, you
may find it rather easy.

We will talk of file-system permissions and how they can be managed, and finally we shall
learn about creating archives and backups.

The Design of File-Systems

As a small aside into the design of file-systems (and operating systems in general), it
is useful to look at other possible solutions. History is a good teacher here. There are
two books you should read when you have some time spare. The first is The Art of
Unix Programming [http://www.catb.org/esr/writings/taoup/html/], and the other is Unix
Haters Handbook [http://www.simson.net/ref/ugh.pdf], both of which are good reading.
The latter book gives some good historical insight into other systems, but beware that
much of its criticisms are at the historical Unix, some of the problems have been
remedied in modern systems.

1. Tour the Virtual File System (VFS)
1.1. Items Found in the Filesystem
Unlike some other Operating Systems you may have heard of, the Unix filesystem is a tree
structure. It has only one root (/). It doesn’t use any concept of drive letters. Every filesystem
you use is mounted (attached, or made available) onto a directory (mount-point) of the
filesystem.

There are various types of items you find in the file-system.

Regular files and directories
Nothing unusual about these. In ls -F output (ls is short for list), directories have /
appended to them. In ls -l output, the first character on the line is a - for a regular file,
or d for a directory.

Hard link
Recall that Unix filesystems are inode based. The inode is a number that points to the
data. Directory entries point to an inode, not to the data directly. A hard link, as created
using the ln command (short for link), creates another directory entry that points to the
same inode.

A hard link can only point to a file on the same filesystem, and are invisible to the naked
eye in standard ls -l output. You can tell by using ls -li command to display the inode
column, and looking for files with the same inode..

Symbolic links, soft link or symlinks.
These are similar to shortcuts under Windows, or aliases under MacOS or Mac OS X, but
are more transparent. When a program opens a symbolic link, it opens the file it points

1

http://www.catb.org/esr/writings/taoup/html/
http://www.catb.org/esr/writings/taoup/html/
http://www.catb.org/esr/writings/taoup/html/
http://www.simson.net/ref/ugh.pdf
http://www.simson.net/ref/ugh.pdf
http://www.simson.net/ref/ugh.pdf

Filesystems

to. Symbolic links can also point to directories. Actually, symbolic links can contain any
text. If the target does not exist, the link is said to be a broken link or dangling link.

Symbolic links are created with the ln -s command. In ls -l output the first character on
the line is a l, the link target is also printed after the filename.

The only way to remember in what order the arguments of ln go is to think of the ln
command a bit like cp, where the source goes first, and the destination (or new thing)
comes last.

Device node
One of the design philosophies of Unix is “Everything is a file”. While this isn’t entirely
true in Linux (network interfaces, for example) all other devices are represented by a
device node in /dev, which might or might not be a virtual filesystem.

For example, the first serial port on a machine would be presented by /dev/ttyS0
(equivalent to COM1 in DOS). An application that interacts with the serial port, such as
minicom, a serial terminal emulator, will open /dev/ttyS0.

This allows access-control to be placed on such devices, in the same way as you would
any other file-system object.

Device nodes are defined with a major number and minor number, and whether or not
the device is a block special file or a character special file.

ls -l output that starts with a b is a block special file, a c indicates a character special
file. A device such as a hard disk is a block device, most others are character devices.

The major number indicates the type of device, such a hard disk. The minor number
indicates the particular device, such as a particular partition on the a particular hard
disk. It is this major:minor, not the name, that tells the operating system kernel which
device the user is opening, and thus which driver to pass the request to.

Socket
Unix systems have a form of network connection known as a Unix domain socket1, which
is parallel to an IP socket, but is entirely local to the machine. Unix domain sockets can
do some things that can’t be done over other socket types, such as passing open files
and credentials, and because they use the filesystem, additional access control can be
applied.

A server process would create a socket file as its socket address, and client processes on
the same machine can connect to the server by using the socket file as the destination
address (i.e. the server address).

We can know which file is a socket file with the following commands. In ls -F output, a =
is printed after a socket file. In ls -l output, a s at the first character means a socket file.

There is no command to create a socket file. It is created automatically when a program
binds a socket to the file with the system call bind(2) .

Named pipe or FIFO
Pipes are very useful in Unix. Anonymous pipes in particular form of the most important
constructs for the Unix command-line environment. They allow the output of one process
to be fed into the input of another, such as when we use the command-line construct
such as ls -l | sort -n +4, which sorts the output of ls -l. Unlike sockets, pipes are
unidirectional.

1Also known as local sockets

2

Filesystems

However, sometimes you want to be able to create something more flexible which would
be impractical to express using the shell’s pipe (|) operator. To do this, you can create
a named pipe somewhere in the filesystem, using mkfifo. In ls -l output, p at the start
indicates a FIFO.

Named pipes are somewhat deprecated in favour of sockets. However, because they are
more useful in shell scripts compared to sockets, they are still occassionally used, and
don’t appear to be in any danger of disappearing soon.

1.2. Hierarchy
The file hierarchy in Unix systems, including Linux, can be a confusing beast at times. This
section will give you some familiarity with the purpose of various directories. Afterwards, you
can have a brief read of hier(7), which should describe the hierarchy of the Unix filesystem
on such a system.

/
The root of the entire filesystem.

/bin
Programs (binary files) that don’t require administrative rights, and need to be available
at boot time. Commands such as ls and mkdir can be found here.

/sbin
Supervisor programs (binary files) that do require administrative rights to make full use
of them, and need to be available at boot time. Commands such as mount and network
configuration commands such as ifconfig can be found here. Note that normal users can
use these commands, but for querying only, they won’t be able to use the command to
make changes to the system.

/lib
Libraries that are needed when the system is booting (before /usr is mounted). It also
includes kernel modules (device drivers and such).

/usr
This is for static (non-changing) data. Most of the software is installed here. A system
should be able to run well if this directory (which is often on its own filesystem or
mounted from across the network) is mounted read-only.

Historically, users home directories were stored in here, which may explain the peculiar
name.

This contains bin, sbin and lib directories, in addition to the following:

include
Header files (*.h) that are included into programs used for compiling programs
against libraries.

local
Has a structure much like /usr, but is for software that the system administrator
has compiled and installed. This directory is outside the scope of the package
management system.

share
Used for files that are shared amongst different system/processor architectures, such
as documentation, pictures etc.

3

Filesystems

doc
Documentation for all the installed software. This does not include manual pages.

man
This is where the manual pages can be found, although you generally don’t go
there yourself, but use man.

src
Used to store software source code such as Linux kernel source code, though there
is no requirement that source code by kept there.

/var
This is for variable (changing) data, such as databases, mail queues, logs, lock files and
other things.

log
Log data produced by the system and its services.

pid
Process ID files so startup/shutdown scripts (init scripts) know which process to kill.
PID files are generally written by daemons (background services) when they start.

mail
Location of email queues and mailboxes.

/etc
This is where configuration files are stored. Historically, its where anything else in the
system was stored, which explains the name.

/dev
This is where device special files are stored. It may be a virtual filesystem, meaning the
contents might not exist on disk, but are determined by the operating system device
drivers and hardware management facilities (eg. USB insertions).

/tmp
A temporary directory that anyone can write to. The contents may be purged
occasionally, or on system boot. If you want a more permanent location, use /var/tmp.

/proc, /sys
These are virtual directories that give you information about processes and the system.

/root
On Linux systems, this is the home directory of the root user.

/home
On Linux systems, this is where the home directories for the users can usually be found.
It is often network mounted and possibly a symbolic link to elsewhere in the system.

1.3. Self-assessment
1. Read the ls(1) to familiarise yourself with the available options (don’t try to remember

them all, except -l (that’s lowercase L, not I), -R, -a and -h).

Write down the ls command you would use to do the following; most of them will require
the -l option and generally some others:

1. List the contents of your home directory recursively. You can use either ~ or $HOME
to refer to your home directory from the shell.

4

Filesystems

Note
There will be a lot of output generated. You can pipe it to less, which will allow
you to page through the output using the Space key and the Page Up and
Page Down keys. Type q to exit less.

command | less

less is a pager which supercedes an older program called more.

2. List all files, including hidden files and directories, in your home directory, non-
recursively. Hidden files or directories are those that begin with a dot, and are not
usually shown in ls output.

3. List the contents of /usr/bin using ls -l /usr/bin. What is meant by the foo -> bar
notation?

4. List the files in your home directory, with file sizes shown with human-friendly units
(ie. bytes, kilobytes, megabytes, gigabytes).

5. List the info about a directory, and only that directory, without ls recursing into that
directory. In other words, the permissions etc. of the directory itself, not the contents
of the directory.

The “size” of a directory in the ls listing does not tell you how much disk space the
contents of the directory consume. Use du -s directory to measure that.

2. Filesystem Permissions
Classical Unix filesystem permissions are one of the things that are often criticised as being
too coarse and inflexible, and rightly so. Compared to the access-control model of other
systems, such as Novell Netware™ and Microsoft Windows™, they are very coarse, and often
you need something more fine-grained.

Thankfully, Linux, like any modern Unix-like operating system, generally comes with the
ability to attach an Access Control List to files and directories. There are also other access
control models available for Linux, although they are not ubiquitous, such as SELinux. We
won’t be covering either of those in this paper.

If, after reading this lab, you are still unsure, you might try looking at Linux File Permission
Confusion [http://www.hackinglinuxexposed.com/articles/20030417.html] and Linux File
Permission Confusion part 2 [http://www.hackinglinuxexposed.com/articles/20030424.html],
which are both excellent articles by Brian Hatch, the author of Hacking Linux Exposed.

2.1. Basic Unix Permissions
In the common permissions model, there are three permissions we are concerned with; the
three permissions are read, write and execute. The meaning of each differs depending on
whether we are talking about a file or a directory.

If you have the read permission, you can open a file for reading, or get a directory listing. The
write permission means we can open a file for writing, or change directory entries (create a
new file or subdirectory; rename a file or subdirectory; or delete a file or subdirectory). The

5

http://www.hackinglinuxexposed.com/articles/20030417.html
http://www.hackinglinuxexposed.com/articles/20030417.html
http://www.hackinglinuxexposed.com/articles/20030417.html
http://www.hackinglinuxexposed.com/articles/20030424.html
http://www.hackinglinuxexposed.com/articles/20030424.html
http://www.hackinglinuxexposed.com/articles/20030424.html

Filesystems

execute permission on a file means you can run the program; on script files, which are text
files, this causes the script to be made runnable just like a regular program. On a directory,
execute means you can traverse it (such as when you cd into it or using find), but it doesn’t
say if you may read the directory contents; additionally, write access to a directory generally
requires execute also.

Each set of permissions (read, write and execute) can be applied to three things: the user a
file or directory belongs to; the Group a file or directory belongs to; and finally to everyone
else (others).

Let’s look at some ls -l output to refer to.

$ ls -l ~/.bashrc
-rw-r----- 1 mal mal 516 2006-03-24 13:53 /home/mal/.bashrc

The very first character in the permission set (the leftmost column), says what kind of
filesystem object it is, which we talked about earlier in the lab.

The next three characters (rw- for the ~/.bashrc) are the permissions which affect the User
(the person that owns the file), which in this example is the user mal (the 3rd field). So the
user mal can read and write to that file.

The three characters after that (r--) are for people that are in the same group as the file (the
group name is displayed in the 4th field of the above ls -l output). These people may only
read the file. It is common practice on Linux systems for users to have their own group for
local accounts. For your accounts, it will likely differ if they are not local accounts. In this
example, the group is mal

The last three affect everyone else (Other people).

The order of checking access permissions is first User, then Group, and finally Other. Only
one set of permission bits is queried once matched. For example, if you are matched by the
Group, but its permission bits deny the group access, the Other bits would not be checked,
even though they may allow the access.

Look at the below ls output2. What permissions will the user jill be granted on this
directory? Assume that jill is not in the group staff.

You don't need to run this command, it's just an example.
$ ls -ld /home/cosc301/teaching
drwxrwx--- 3 bob staff 4096 2007-01-30 16:23 /home/cosc301/teaching

Because the user jill is not the user bob, who owns this directory, nor is she a member
of the staff group, so she only gets the permissions granted to the others, which have no
permissions.

Now assume that the user alice, who is a member of staff, tries to list the contents of
the directory, which requires a read priviledge. alice is not the user bob, so is not matched
against the User permissions; but alice is a member of staff, so gets the permissions rwx,
which grants read, write and execute. This means that listing the directory will work.

Changing Ownership and Permissions
The two commands for changing the owner and group of a file or directory are chown and
chgrp. chown can be used to change the group at the same time. Both can be used to apply
the changes you specify in a recursive manner.
2This has been slightly modified from the true permission set on this particular directory.

6

Filesystems

chown may only be used by the root user. The user invoking chgrp must belong to the
specified group and be the owner of the file, or be the super-user (root).

Have a quick look at the manual pages for chown and chgrp. Take notice of how you can
specify both user and group with chown by using the user:group syntax.

When we come to changing the permission (or mode) of a file or directory, there are two
syntaxes you can use, symbolic notation and octal notation.

Symbolic notation is useful when you only need to change some of the permissions. Recall
that we can apply permissions to the User, Group, and Others. Recall also that we have three
permissions: read (r), write (w) and execute (x). We can grant these permissions in an absolute
or relative manner, or we can revoke these permissions. We seperate the User, Group and
Other sections with commas. The syntax is most easily learned with examples as below.

Note
In the following examples, u represents User, g for Group, and o for Other.
Don’t get confused and think that o stands for owner!

This command will create an empty file if it doesn’t exist.
$ touch myfile
$ ls -l myfile
-rw-r--r-- 1 mal mal 0 2007-02-17 20:44 myfile

Turn on the execute bit for the owning user.
$ chmod u+x myfile
$ ls -l myfile
-rwxr--r-- 1 mal mal 0 2007-02-17 20:44 myfile

Remove read bit for all.
$ chmod -r myfile
$ ls -l myfile
--wx------ 1 mal mal 0 2007-02-17 20:44 myfile

Grant read to User and Group.
$ chmod ug+r myfile
$ ls -l myfile
-rwxr----- 1 mal mal 0 2007-02-17 20:44 myfile

Set multiple parts.
$ chmod u=rw,g=rw,o=r myfile
$ ls -l myfile
-rw-rw-r-- 1 mal mal 0 2007-02-17 20:44 myfile

On the other hand, if the octal notation is used, you cannot grant or revoke individual
permissions. The notation is octal because each permission set for a User, Group or Other
takes three bits, and so has a digit between 0 and 7 inclusive. Therefore, we need three octal
digits to specify User, Group and Other.

For each digit, read is worth 4, write is worth 2 and execute is worth 1. For example, if we
want to specify read and write, but not execute, that is 4+2=6.

$ ls -l myfile
-rw-rw-r-- 1 mal mal 0 2007-02-17 20:44 myfile
The above file has octal permissions 664.

$ chmod 755 myfile
$ ls -l myfile
-rwxr-xr-x 1 mal mal 0 2007-02-17 20:44 myfile

7

Filesystems

The install command

If you want a command that combines the features of cp, chown, chgrp, chmod and
mkdir, then you might like to look at the install command. You may find more details
about install using man 1 install.

Initial Permissions (umask)
When a file is created, the permissions that it gets are 666 (for files), or 777 (for directories),
minus3 the umask value. This umask value turns off various bits in the permission set in
order to make the default permissions for new files safe. umask settings are inherited in the
process hierarchy. The value is generally octal 022, but can be changed in the shell using the
umask command. With the umask value 022, files created would have permissions rw-r--
r-- (octal 644) by default, and directories would be rwxr-xr-x (octal 755).

2.2. Special Permissions
In addition to the standard permissions, there are the extended permissions. These are special
bits that you as an administrator need to be aware of.

The special bits take up a forth octal digit (the most significant digit), so when you see an
octal permission such as 2775, the special bits are contained in the digit 2.

Set User ID bit (SetUID)
On an executable binary file, this lets the program run as the person who owns the file,
often root. In contrast, in a normal situation where the SetUID bit is not set, if you run
ls that is owned by root, it would run with your permissions.

Note that using the SetUID bit can be dangerous, and must be carefully managed, since it
is often used on root-owned system programs. Also the SetUID bit won't work for scripts
on many Unix-like systems for security reasons.

If the SetUID bit is used on a root-owned system program, the program has the root
privilege even if it is run by a normal user. Therefore, the program should drop its root
privilege as early as it can, as long as the access that requires root privilege has been
done. One such program is ping. It uses ICMP which requires root access. Another
example is passwd, which needs to be able to modify files normal users cannot write to.
Once those files are opened, the root privilege should be dropped in the program. This
is an example where the Least Privilege Principle is applicable.

On a directory, SetUID has no effect. The SetUID bit has a value of 4. The bit can be
turned on using chmod u+s. In ls -l output, a file with the SetUID bit will appear as
follows:

$ ls -l /usr/bin/passwd
-rwsr-xr-x 1 root root 37140 2010-01-27 06:09 /usr/bin/passwd

Here, we can tell that SetUID is on because of the s in the User execute position. Because
the s is lower-case, we know that there is a x underneath it also, so the User execute
bit is also set. However, if the upper-case S is shown instead, it means the User execute
bit is not set.

3Actually, the Boolean bitwise operation AND and NOT are used, as in the formula mode = 666 AND NOT(umask)
for files.

8

Filesystems

Set Group ID bit (SetGID)
Much like SetUID on files, SetGID files run with the priviledge of the group that owns
the file.

This is often used for games, that need protected access to a shared scoreboard, without
giving the user write access to the scoreboard.

On the other hand, if an entry is added to a directory with the SetGID bit set, a file
becomes owned by the group that owns the directory when the file is created. In contrast,
in a normal situation where the SetGID bit is not set on the directory, when a new file is
created, the group of the file will be the primary group of the user who has put it there.

SetGID, along with umask, is useful for groupwork, or when you need to share
responsibility between multiple people (such as a staff group). You can use umask to
allow group read/write of files, while making all files created under the shared directory
automatically belong to the group of the directory by setting the SetGID bit. In this
way, all files created under the shared directory are readable and writable by anyone
belonging to the group of the directory.

The SetGID bit has a value of 2. It can be set using chmod g+s. In ls -l output, it appears
as follows:

$ ls -ld /var/mail
drwxrwsr-x 2 root mail 4096 2009-10-29 09:55 /var/mail

This time the s is in the Group execute position; so SetGID is set. The s is lower-case, so
the Group execute bit is also set. Likewise, the upper-case S means the Group execute
bit is not set.

Sticky bit
On files this has no effect under Linux4. But when set on a directory, it is very special.
It means that only the user who created an item inside a sticky directory may delete it.
This is the behaviour of the /tmp directory.

The /tmp directory has an octal mode of 1777. This means that anyone can add or delete
entries into the /tmp directory. If the sticky bit was not set (ie, the overall mode would be
0777), then the user bob could delete the user alice's files in /tmp. But with the sticky
bit, this could not happen.

The sticky bit has a value of 1. It can be set using chmod +t. In ls -l output, it appears
as follows:

$ ls -ld /tmp
drwxrwxrwt 5 root root 1160 2007-02-18 00:36 /tmp

The t is shown in the Other execute position. The t is lower-case, so the Other execute
bit is also set. Likewise, the upper-case T means the Other execute bit is not set.

2.3. Self-assessment
1. Fill in the blanks to convert between octal and symbolic notation; all but the last two

you would be likely to find on a real system.
4Originally on UNIX systems, it told the operating system to keep a file loaded in memory. Today it is not needed
due to improvements in operating system design.

9

Filesystems

Octal Symbolic
644
 rwxr-xr-x
1777
 rwsr-xr-x
3070
 ---rwS---

2. If you look around the typical Unix filesystem long enough, you find some unusual
permissions. Take for example the permissions that are classically set on the files in /
usr/games/, and the permissions on some of the files in /var/games/.

You don't need to run this as it doesn't apply to Client-1
$ ls -l /usr/games/
total 2772
…
-rwxr-xr-x 1 root root 2461 2009-09-22 21:23 glchess SetGID is not set
-r-xr-sr-x 1 root games 142716 2009-09-22 21:25 glines SetGID is set
…
$ ls -l /var/games/
total 0
 glchess has no shared scoreboard files
-rw-rw-r-- 1 root games 0 2009-10-29 10:02 glines.Large.scores
-rw-rw-r-- 1 root games 0 2009-10-29 10:02 glines.Medium.scores
-rw-rw-r-- 1 root games 0 2009-10-29 10:02 glines.Small.scores
…

The files in /var/games/ are scoreboard files, which need to be updateable by the
games when run as different users. However, we don’t want users to be able to edit them
by themselves, only by the games that the user is running. Looking at these permissions,
describe how this works. Hint: users are not meant to be in the ‘games’ group in order
to play games; indeed that would be rather bad.

3. Assume you see a directory which ls -l describes as drwxrwsr-x. Write a paragraph to
completely describe the effect of this permission set.

You should consult ls(1) for some of the subtleties of the printed permissions with regard
to special bits and execute bits, if you haven’t already.

4. Give a typical default umask value and describe its effect.

3. Archival and Backup
Archival and Backup are two distinct activities, though the terms are used somewhat
interchangably. Archival is long-term, often indefinite, while backups are often rotated, only
keeping material for a certain window of time, while archiving information is not intended to
ever be deleted. Backups are generally done according to a schedule, such as a daily, while
archival is often done on an as-needed basis, such as when creating a software release (eg.
foo-1.2.3.tar.gz to upload to a website) or when you want to move your precious digital
photo collection from your hard-disk onto DVD.

The media and method you use will depend on whether you are archiving or backing up.
Backups should ideally be able to be done unattended to a remote location, so backing up
over the network to a cheap but reliable hard disk is a useful way of handling this.

10

Filesystems

When archiving, removable media is generally the best way to go, as it scales better. However,
any media has aging issues, and this can be prevalent for a number of optical media, such as
recordable CDs and DVDs, so you need to occasionally check the integrity of your archives
to ensure the data is still intact, and pay attention to things like the brand and type of disc,
and how they are stored.

Another option is to rely on a cloud provider. There are various options depending on the
scale of the backup/archival needs. Services such as Google Drive, Apple iCloud, Microsoft
OneDrive are useful for an individual's documents. Some offerings, Google Suite (their Docs,
Sheets, Drive, Gmail etc. for business) allow you to manage a small business and provide
backup/archival solutions. Others (Google Cloud Storage, Amazon Glacier) allow you to store
vast amounts of data very cheaply but cost more to retrieve5.

USB Flash drives, DVD-ROM, USB HDDs or the cloud?
It’s hard to have long-term confidence in DVDs, particularly those bought in
big spindles, given the move towards removing of optical media drives from
computers. USB flash drives are interesting devices; they do have a significant
lifetime issue though, but only in terms of how often you write to them.

USB flash drives (unlike SD cards you find in most digital cameras) don’t have
a physical write-protection switch, which creates an issue regarding accidental
deletion and viruses.

USB hard drives are an option, and behave like a flash drive but have the
benefits and drawbacks of traditional spinning hard drives.

Recently developments in online infrastructure allow you to put a (relatively)
large amount of data online for free. Services such as Google Drive, Dropbox
and iCloud all offer storage of personal files, Amazon Glacier is more catered
towards storage of large files (and a slow retrieval time). However, there are
jurisdiction, security, and privacy issues with this approach, especially when
medical records are concerned.

It may be better to “hedge your bets” and put your precious things in as many
places as possible; then you can store at least one copy off-site (perhaps mailing
a flash drive to a family member for safe keeping--and is often the only practical
way to deal with large data sets).

Archiving and backup are otherwise technically very similar, and many tools can be used for
both activities. To illustrate that point, any single archive should be usable by itself, whereas
a backup might record changes only from a previous backup on which it becomes dependent.

Note
For the rest of the section, the terms “archive” and “backup” can be treated
as synonymous. Just beware that there is a distinction, but that it only really
matters when considering issues such as media, storage, etc.

In the Unix world, backup is often done using the tar command to create the archive/backup
file, which is then burned to disc or stored elsewhere. tar was originally meant for use with
5Under an old pricing scheme, an Amazon Glacier user was surprised by the bill [https://medium.com/@karppinen/
how-i-ended-up-paying-150-for-a-single-60gb-download-from-amazon-glacier-6cb77b288c3e]! Do note the pricing
scheme has been changed since. Moral of the story is to plan ahead!

11

https://medium.com/@karppinen/how-i-ended-up-paying-150-for-a-single-60gb-download-from-amazon-glacier-6cb77b288c3e
https://medium.com/@karppinen/how-i-ended-up-paying-150-for-a-single-60gb-download-from-amazon-glacier-6cb77b288c3e
https://medium.com/@karppinen/how-i-ended-up-paying-150-for-a-single-60gb-download-from-amazon-glacier-6cb77b288c3e

Filesystems

magnetic tapes as a destination medium. Tapes are still used today, but are quite expensive
compared to hard disks.

3.1. Using tar
tar is one of those really old Unix programs, and is still quite useful for its task. The purpose
of tar is to take a directory or a list of files, and package it as a single file. It is then usually
passed to a compressor, commonly gzip or bzip2. The process is reversed to get the files out.
If you have used other compression programs, such as zip or jar, please realise that those
tools perform both the archiving and compression.

tar has three basic modes: create, list, and extract. tar archives, sometimes called tarballs6,
often have a .tar.gz or .tgz extension, which means they’ve also been compressed with
gzip. There are also bzip2 compressed files, which are slightly smaller, but take longer to
process. bzip2 compressed files have a .tar.bz2, or .tbz2 extension.

To create an archive, we use the c option. You can specify an output file using the f option.
v is for verbose output7. z passes the output (or input) through gzip (j for bzip2 instead)
to (de)compress the data.

This is generally a bad way of doing it, we’ll see why shortly
tar -zcvf /tmp/logs-bad.tgz /var/log
tar: Removing leading `/' from member names
/var/log/
/var/log/syslog
/var/log/apt/
/var/log/apt/history.log
/var/log/apt/term.log
/var/log/Xorg.0.log
…

Instead, cd to where you want to go first
then operate on the current directory (.)
$ cd /var/log
tar -zcvf /tmp/logs-good.tgz .
./
./syslog
./apt/
./apt/history.log
./apt/term.log
./Xorg.0.log
…

We can list the contents of an tar archive using the t option. Note that the v option when
listing will give output similar to ls -l, whereas without v, the output will be like plain ls.
Additionally the command head -5 only shows the first five lines of the output.

This one is listing the archive we made using the “bad” method.
Notice the path var/log contained inside the archive.
$ tar -ztf /tmp/logs-bad.tgz | head -5
var/log/
var/log/syslog
var/log/apt/
var/log/apt/history.log
var/log/apt/term.log

6To the disgust of many people.
7Not verify, as some mistakenly believe.

12

Filesystems

In the “good” method, we don’t have that problem.
We could unpack it anywhere and not get var/log
$ tar -ztf /tmp/logs-good.tgz | head -5
./
./syslog
./apt/
./apt/history.log
./apt/term.log

This shows the verbose output.
$ tar -ztvf /tmp/logs-good.tgz | head -5
drwxr-xr-x root/root 0 2010-11-19 09:31 ./
-rw-r----- syslog/adm 4139 2010-11-23 13:30 ./syslog
drwxr-xr-x root/root 0 2010-11-11 13:16 ./apt/
-rw-r--r-- root/root 55950 2010-11-11 16:21 ./apt/history.log
-rw------- root/root 94518 2010-11-11 16:21 ./apt/term.log

Finally, we can extract the contents using the x option. Note that if you unpack the archive
as root, the Owner and Group will be set to those in the archive; however, if you unpack the
archive as a normal user, they would end up with all files and directories belonging to you and
your group. If you have to unpack source as root, you might like to use chown -R root:root
to reset the User and Group on all files to the root user; otherwise, you might end up giving
write permissions of some important files to some other user unintentionally, which could be
disastrous. Another thing to be wary of is the permissions you give to the archive. You don’t
want to allow normal users to read a backup of everyone’s home directories.

Make a place to extract to…
$ mkdir /tmp/restore
$ cd /tmp/restore

Time to illustrate why the “bad” method is annoying…
$ tar -zxvf /tmp/logs-bad.tgz
var/log/
var/log/syslog
var/log/apt/
var/log/apt/history.log
var/log/apt/term.log
var/log/Xorg.0.log
…

…what did we get?
$ ls -R .
.:
var

./var:
log

./var/log:
apparmor dmesg kern.log.1 syslog
apt dmesg.0 lastlog syslog.1
aptitude dmesg.1.gz lpr.log udev

…bother! Everything is in var/log/FOO
and I wanted just ./FOO. Let’s start again…

$ cd ..
$ rm -rf restore
$ mkdir restore
$ cd restore

…this time using using the “good” archive.
$ tar -zxvf /tmp/logs-good.tgz
./
./syslog

13

Filesystems

./apt/

./apt/history.log

./apt/term.log

./Xorg.0.log
…
$ ls -R .
.:
apparmor dmesg kern.log.1 syslog
apt dmesg.0 lastlog syslog.1
aptitude dmesg.1.gz lpr.log udev
auth.log dmesg.2.gz lpr.log.1 ufw.log

Great, that’s more like it!

If we only want to extract certain members of an archive, such as a partial restore, you can list
those members (precisely as they appear in the listing output), at the end of the tar command.
Here’s an example extracting just the ./apt/ directory:

$ cd /tmp
$ rm -rf restore
$ mkdir restore
$ cd restore
$ tar -zxvf /tmp/logs-good.tgz ./apt/
./apt/
./apt/history.log
./apt/term.log

3.2. Investigating Backups
Let us first consider some of the things we would like to have in a modern backup system.

• Remote, to protect against localised disaster, such as flooding. It should at least be in a
different building. The amount of data would suggest somewhere else on the LAN. Off-site
is better.

• Cheap to implement. Largest consideration here is media, drives, software, and network
performance and possibly charges. Hard disks are cheap, large, and fairly reliable. Good
for backups, and any host with sufficient space and able to sustain a high amount of traffic
at off-peak times should suffice.

• Plentiful snapshots. You want to be able to restore at any point in time, and be able to do
so with minimal loss and fuss. Storing snapshots can be done in a variety of ways, some of
which are quite cheap. It can even be cheap enough to provide a snapshot every 30 minutes.

• Easy to restore. For easy, you can also read fast. This can also mean that it is easy to do
a partial restore, often just a single file. Ideally, the user might be able to perform this
operation themselves.

• Secure. The transmission must be secure, as well as how it is stored.

• Maintain file meta-data, such as access control lists. On Mac OS X for example, you can
set a particular colour for a file or directory, and enter comments. It would be good if we
don’t have to backup to the same type of operating system or file system as the one we
are backing from.

• Selection of items to include/exclude. There are a lot of things that don’t really need backed
up. But on the other hand, it can be feasible to include everything up in case you forget
something important.

14

Filesystems

• Suitable for very large files, such as virtual machine disk images: you wouldn’t want a small
change in one area of the file to cause the entire very large file to be backed up again.

A system administrator, perhaps as part of a wider site-policy, might often use a commercial
piece of software for peace of mind.

They might instead write a fairly complex shell-script which determines a list of files that
need backed up, which is then fed into tar, as tar is more appropriate as a backup engine,
not a “differencing” engine.

rsync, a file synchronisation tool, has some very useful functionality for doing backups, but
it also has some issues that make it incomplete as a backup tool. It tries to transmit only
what has changed, but it isn’t really designed for backups. Other tools can use rsync, or
the underlying mechanisms, as part of a backup solution. One such product is called rdiff-
backup.

We won’t be using rdiff-backup today, but you will be finding out about its feature set.

3.3. Self-assessment
1. Create a backup of Mal’s home directory (/home/mal), storing it in /tmp/mal-

backup.tar.gz. Set the permissions such that only Mal can read it. Ensure that it does
not have home/mal/… at the start of each entry in the archive, as done in the previous
“bad” method.

2. The above command likely has a security problem, in that the archive does not have
a suitable mode when it is being created. This creates a window of opportunity for
someone to open the file and read the contents before tar has finished and you have
fixed the permissions.

How can you fix this problem? (Hint: use umask).

3. Part of a diet of the system administrator is to look at various products and evaluate
their usefulness to solve particular situations. Have a look at the homepage of rdiff-
backup [http://www.nongnu.org/rdiff-backup/]. Compare the features of rdiff-backup to
the features we desire, listed above, marking each with a tick, cross or question mark,
for “meets requirement”, “does not meet requirement”, or “unsure” respectively. Do
you think rdiff-backup meets our stated needs?

3.4. Rdiff-backup Example
rdiff-backup is quite useful for most purposes (not for all though, for example it doesn’t
handle sparse files well), which generally includes sending them to a remote system over SSH
every night. So here is one example that shows a number of the features of rdiff-backup.
You WILL want to edit this to suit other systems.

Do not run this script. It is just an example.

#!/bin/bash
#
Backup using rdiff-backup.
#

rdiff-backup \

15

http://www.nongnu.org/rdiff-backup/
http://www.nongnu.org/rdiff-backup/
http://www.nongnu.org/rdiff-backup/

Filesystems

 --exclude-if-present NOT_BACKED_UP \
 --include /home \
 --include /etc \
 --include /var/mail \
 --include /var/www \
 --include /var/log \
 --include /usr/local \
 --include /usr/lib/cgi-bin \
 --include /var/lib/dpkg \
 --exclude '**' \
 --remote-schema \
 '/usr/bin/ssh -o BatchMode=yes -C -i/path/to/.ssh/backup %s' \
 / \
 remote_user@remote_host::remote_path

Let us walk through this script briefly. First, to help make it clear to users, and to enable
users to say what doesn’t get backed up, we ignore any directory that has a file called
NOT_BACKED_UP inside it. This also enables greater maintainability of this script (We could,
for example, use it a template for other systems).

In this particular example, because all the software is stock Debian packages, we only want
to include those parts that can’t easily be reinstalled, plus any configuration files, plus any
other data that might need to be backed up (We sure hope we haven’t missed anything; it’s
generally much easier just to backup everything). Because this is a Debian system, we have
backed up the directory that contains information about all the installed packages (/var/
lib/dpkg/) which will enable us to reinstall without too much fuss.

By default, we exclude anything else that doesn’t match our previous include or exclude
directives; see the manual for what ** means.

Because we are backing up over SSH (which we shall learn about much later in this course),
we have changed the template (schema) that rdiff-backup uses to run the ssh command.
We have enabled batch operation (don’t bother every trying to ask for a password), enabled
compression, and pointed to a particular private key we want to use just for backing up.

We then say where we want to start our backup from (in this case, the root directory /, and
where we want the backup to be stored.

There is a little more to this, to do with SSH public-key authentication and saying
which command gets run on the server. This is configured in the remote user’s ~/.ssh/
authorized_keys and looks something like the following. Don’t worry if you don’t understand
it, as you‘ll learn about SSH in a later lab, and we won’t be doing any assessment in this
section.

command="/path/to/rdiff-backup-1.1.14 --server",from="client-host.domain" public key

16

