
Internal Routing
COSC301 Laboratory Manual

Note
We use Vyatta as our routing engine. It consists of several different parts. In 2013 a
company called Brocade bought Vyatta, and have since discontinued the open source
version of Vyatta, turning it into a commercial product. Prior to this, the community
was quite large, now it's a shadow of its former self. Fortunately, some of the
community have made a fork of the last remaining version of the open source version
called VyOS. Most of the commands are the same, but there are some differences.
Because of this we have decided to stick with Vyatta for the time being. The purpose
of the lab does not depend on the version of the software we are using.

There are five or six parts to this lab; there is plenty to do but it is not difficult; perhaps a
little time consuming. Unlike other labs, if you only get half the lab completed, you can get
partial marks. The first part is to aquaint yourself with the Vyatta router platform by looking
at the helpful video provided by Vyatta; you could prepare by watching this outside of class
time. The second part is learning about Virtual LANs, which we shall use in the third part
using VirtualBox to implement a particular network topology and boot the machines using
the materials provided. Investigating static routing and the use of the RIP routing protocol
will take up the last two parts and should take the majority of the time.

One thing worth noting in this lab is that you don’t have to do anything with IPv6. However,
because IPv6 would be interesting to do, there is an optional section at the end which looks
at making a similar addressing structure and using RIPng.

For this lab, and particularly the following lab on subnetting and firewalls, you may well
prefer to work in pairs. Take turn about configuring the machine, and doing the research as
to which commands you will need. We strongly suggest you to keep the topology map for this
lab within sight at all times.

On your Windows PC, you should find that the Live CD images, as *.iso files, for Vyatta
and Ubuntu should be available from the COSC301 class resources folder in the K: drive
(Coursework), along with all the documentation you might need. As far as the Vyatta
documentation is concerned, you should find available an electronic copy of the Vyatta
Command Reference and Quickstart Guide in Lab resources.

1. Watch Vyatta Demonstration Video
Start this section by navigating to Youtube [https://www.youtube.com/watch?
v=2IvDzvHB858] and viewing the video An Introduction to Vyatta, by Kevin Barton. This
is approximately 12 minutes, and will give you some useful background information about
Vyatta and the product.

2. Virtual LANs (VLANs)
One of the common, though somewhat advanced technologies that make designing and
maintaining a LAN easier today than in previous years is the advent of Virtual LANs. Before
we look at VLANs, let’s first have a brief look at the motivation for them, and cover some
technological background.

1

https://www.youtube.com/watch?v=2IvDzvHB858
https://www.youtube.com/watch?v=2IvDzvHB858
https://www.youtube.com/watch?v=2IvDzvHB858

Internal Routing

This material is also available from the course website and in the class resource server as the
“Back of the Envelope Guide to Virtual LANs” video.

2.1. Broadcast Domains
Before we begin, we want to make clear that we are not talking about a collision domain. This
is because the terms could be easily confused, and we want to make a clear distinction for
you. A collision domain is what you have in a mixed ethernet segment, such as on a repeating
hub. On a switching hub, the collision domain is simply the basic link between the host and
the switch, typically a single cable; because the basic link is not shared between hosts, there
are no other stations to contend for access to the physical medium.

A broadcast domain is everywhere a data-link level (eg. ethernet) broadcast frame would
propogate to1. This area is demarcated by routers, which signal the end of a layer-2 (data-
link layer) network; to go further requires support at a higher layer, such as layer-3 (eg. IP)
to route the packets through the inter-network.

So, looking at the network below, we can see that there are two broadcast-domains, which
are labelled as A and B. As an extra exercise, we suggest you also identify the various collision
domains.

Figure 1. Broadcast Domains

A network showing two broadcast domains, and how they are connected using
routers, switches and hubs. Try to identify the collision domains as well, to

appreciate the difference between collision domains and broadcast domains.

2.2. A Virtual LAN
A Virtual LAN (VLAN) is, quite simply, the ability to segregate a switch into seperate
broadcast-domains. This means that in order to get between the different VLANs, a router
must be used. In the older days, when VLANs were still new, a one-armed router was used,
which had an interface on both VLANs; today such a configuration would be more likely to
1This is assuming that the data-link layer being used supports broadcast. There are a number of Non-Broadcast
Multiple Access (NBMA) network technologies; one example would be Frame Relay, which is used in a Wide Area
Network (WAN) environment.

2

Internal Routing

be called a “router on a stick”. Today however, a high-speed router is embedded as part of
the switch; this switch is then referred to as a layer-3 switch.

VLANs are identified by a 12-bit number (4096 different VLAN IDs are possible). A switch-
port may be a member of a number of VLANs; in the case of multiple VLAN assignments to
a port, trunking must be used, which tags that the frames their VLAN identifier, so the next
device (typically a switch or a router) can know which (virtual) LAN it belongs to. Figure 2,
“VLAN Assignment and Trunking” should make this clear.

Figure 2. VLAN Assignment and Trunking

How VLANs are specified, including static assignment by switch-port, assignment by
802.1X authentication (“port” based authentication) and trunking. Not shown is the routing

support and access control to allow traffic to flow between VLANs. VLAN 1 is generally
reserved for management traffic and all ports generally default to being in VLAN 1. In

particular, if the switch has an IP address for management purposes, it starts off in VLAN 1.

Also not shown is the Policy Determination Point, which is generally some server
that tells the access-point (acting as a Policy Enforcement Point) what VLAN to

assign a client to, as well as access-control data. These terms are particular to the
field of Network Access Control, and are not talked about any further in this lab.

There are three layers to a standard Enterprise network design. The Access layer of a network
is where clients connect to the switches. Traffic that needs to go to somewhere else on the
network goes through the uplink to a Distribution layer switch (commonly there would be at
least two, for redundancy). The Distribution switches aggregate a number of Access switches,
and on their uplinks connect to the Core switches. As we move into the core, the switches
get more and more powerful.

Clients, which are at the access layer of the network, will not have any idea that VLANs are in
use, which is what we want, because it means the client doesn’t have any extra configuration

3

Internal Routing

to deal with. Thus, in this case, we say the switch-port is an “access” port, rather than a
“trunk” port. In this case, the access layer device (typically a switch or wireless access point)
will determine the VLAN based on the switch-port (typical for ethernet) or authentication
data (typical for enterprise wireless access using 802.1X and RADIUS.

Take a moment to refer again to the picture above. Can you see the benefits we get from
using VLANs when we have different classes of device? (business, staff wireless, etc.) Hint:
think about the maintainance activities in a network (Moves, Adds and Changes).

Can you imagine how much more complex the network would have to be if we didn’t have
VLANs? We would loose a lot of flexibility, and cost would be very much higher. We would
at least need many more switches and access-points, routers and cable. Running extra cable
would be the most expensive part. We investigate this further in the next section.

2.3. The Motivation for Virtual LANs
Briefly, a VLAN gives us three major benefits: traffic control by prioritising traffic in particular
VLANs or reducing broadcast traffic by making the broadcast domains smaller; security,
by controlling traffic between different VLANs (subnets); and flexibility in network design
without extra equipment.

We like to have flexibility in a network to move clients and servers into different subnets
depending on their role and security level; firewalls are one-such tool that can help us
here, which we cover in the following lab. Consider the network shown below, which is
representative of a university campus where students can have their own laptops on the
network. In this network, there are different security classes of device: student wireless,
student wired, staff wireless, staff wired, and business (corporate) devices as distinct from
academic staff. We want each of these to have their own subnet so we can control traffic
going between them.

4

Internal Routing

Figure 3. Using Virtual LANs to divide a network.

Using Virtual LAN technology gives us much greater flexibility and
simplicity in how we design and implement switched networks.

With the use of VLANs in this network, we can have machines in different subnets that are
physically dispersed within the network. That is something that would otherwise be quite
impractical.

There is more to be said about VLAN management, most notably about how a VLAN database
mapping between VLAN indentifiers and a name can be shared amongst the various switches,
using the VLAN Trunking Protocol (VTP). More difficult is how you can automatically assign
a VLAN based on protocols such as 802.1X, but that is outside the scope of this lab.

5

Internal Routing

3. Configure VirtualBox with the
Topology
Figure 4. Interior Routing Network Topology

The top part of the figure shows the Layer 3 network topology diagram showing address
interfaces (VLAN is used on most interfaces) and the switch they are plugged into.
This is not a typical deployment of VLANs because the redundancy we achieve at

the IP layer is undone by the single point-of-failure of Switch 2. The bottom part of
the figure shows the Layer 1 physical topology diagram. You can use this diagram

to appreciate how the network equipment would be physically connected in this lab.

In this section you will be using VirtualBox to create, configure and connect the devices in
the network:

1. You will define a virtual machine for each host and router in the network, connecting them
appropriately to the switches, which will be created for you by Virtualbox. This defines the
Physical layer topology (layer 1).

2. After booting the devices in the network, you will configure the software inside them to
build the Network layer toplology (layer 3).

6

Internal Routing

Figure 4, “Interior Routing Network Topology” shows the topology at layer 3 (the Network
layer: IP) and also at layer 1 (the Physical layer: the cables), to help you to appreciate how
the devices would physically connect to each other.

Each of the switches will need to be created in our virtual environment, so they are given
simple names Switch1, Switch2 and Switch3 so we can distinguish between them; better
names might have been Core, AccessEast and AccessWest as one example of many.

Start up VirtualBox. We shall begin by adding the Router R1. As we can see from the network
map R1 has three logical interfaces2 but two physical interfaces. We need to say what physical
interfaces (corresponding to ethernet cards on a real machine) we want each machine to have.

Create a machine, call it IntRoute_R1 or something suitable so you don’t get it confused with
other machines in the lab and other machines you might create in a later lab. The routers
are command-line only and don’t need much memory, but since they won’t have any swap,
we don’t want to underestimate the amount of memory; 128 MB should be plenty. Because
we are using a Live CD we don’t need a hard-disk, so don’t configure one. Have it boot only
from CD/DVD-ROM, taking care to remove the floppy drive from the boot order.

Note that Vyatta requires that the virtualised system has a CPU feature called Physical
Address Extensions, so you will also require the Enable PAE/NX feature in the Processor
section of the System tab.

In the Storage tab you will need to check Mount the CD/DVD Drive and use the ISO Image
File. If the vyatta-livecd-virt_VC6.1-2010.10.16_i386.iso option is not present, click on the
folder icon next to the drop-down box; click Add to register the ISO file with Vyatta so it now
appears as a choice. Then you can click on Select to use the VC6.1 (Vyatta Community-edition
version 6.1) ISO image.

For each router we will need to create a virtual floppy disk (another image file) to store our
router configuration. To do this open Git Bash app on your Windows PC and type the following
command to create a 1.44 MB (actually 2 MB, but close enough) file full of empty space. You
should then move these image files to your myvms directory in the J: drive.

$ for R in R1 R2 R3; do
> dd if=/dev/zero of=IntRoute_${R}_floppy.img bs=1k count=1440
> done

Back in VirtualBox, add a floppy controller by clicking on the Add Controller icon (first button
from the left under the Storage Tree) and selecting I82078 (Floppy). The sequence of steps
for adding a floppy controller and disk is illustrated in Figure 5, “Adding a Floppy Controller
and Disk to VirtualBox (1)”, Figure 6, “Adding a Floppy Controller and Disk to VirtualBox (2)”,
and Figure 7, “Adding a Floppy Controller and Disk to VirtualBox (3)”. The final state of the
storage tree should look like Figure 8, “Adding a Floppy Controller and Disk to VirtualBox
(4)”. Remember that each machine should use a different floppy image you made previously.

2Four if you count the loopback interface, but we don’t care about that at the moment.

7

Internal Routing

Figure 5. Adding a Floppy Controller and Disk to VirtualBox (1)

The sequence of steps for adding a floppy controller to a Virtualbox
virtual machine, and assigning a floppy disk image to it (Step 1).

8

Internal Routing

Figure 6. Adding a Floppy Controller and Disk to VirtualBox (2)

The sequence of steps for adding a floppy controller to a Virtualbox
virtual machine, and assigning a floppy disk image to it (Step 2).

9

Internal Routing

Figure 7. Adding a Floppy Controller and Disk to VirtualBox (3)

The sequence of steps for adding a floppy controller to a Virtualbox
virtual machine, and assigning a floppy disk image to it (Step 3).

10

Internal Routing

Figure 8. Adding a Floppy Controller and Disk to VirtualBox (4)

Final state of the storage tree after the sequence of steps for adding a floppy
controller to a Virtualbox virtual machine, and assigning a floppy disk image to it.

In the Network tab, we need to enable the particular virtual ethernet adaptors we need.
R1 has two “physical” Ethernet adaptors: eth0 and eth1 (eth1 will be split into two logical
adaptors when using VLAN). For all adaptors in this lab we want to use Attached to: Internal
Network. Set the Network Name: field for R1’s Adaptor 1 (eth0) to the string IntRoute-
Switch1. Enable R1’s Adaptor 2, and likewise connect it to IntRoute-Switch2; note that the
first switch is now available in the drop-down box (we’ll use this later when configuring the
other nodes, i.e., routers and clients, in the network).

Don’t use the Intel PRO/1000 family of adaptors
For every adaptor used by the routers, particularly those connected to a VLAN
trunk (ie. connected to the second switch), go into the Advanced adaptor
properties, and set the Adaptor Type to either the Paravirtualised adaptor or
the AMD PCNet Fast III.

11

Internal Routing

This is because the Intel PRO/1000 family of adaptors will strip off the
VLAN tags as they leave the machine, causing your routers not be able to
communicate, which is highly annoying. There is no supported way inside
Vyatta (or Linux in general) for changing this.

In the Ports tab, disable USB (routers don’t typically have USB ports); under the System tab,
use USB Tablet as a pointing device3.

Back in in the Ports tab, enable the Serial port COM1 and set the Port Mode to Disconnected.
Vyatta expects a COM1 (/dev/ttyS0 in Linux-speak) to be present so it can offer a serial-
terminal, just like a real router. If this device is not present, it will occassionally complain,
but it will still work. We shall use this later on in the next lab.

Screenshot
Now go on and configure all of the other routers and hosts. Remember that for the
hosts C1 and C2 no floppy is needed and they will be booting from an Ubuntu Desktop
Live CD, except you need to increase their RAM to more than 2GB. Also, don't forget
to put the CDROM at the top of the boot list, or VirtualBox may look at other existing
drives first, which cannot boot. You can leave all other configurations according
to their defaults, which should be reasonable if you selected Ubuntu Linux as the
operating system type in the wizard. Take a screenshot of each of the configuration
summaries shown by VirtualBox.

When you have configured virtual machines for R1, R2, R3, C1 and C2 you are ready to boot
your routers and hosts. When powering on a network of machines, we need to consider the
order of which machines are started. Clients will typically (though not in this particular lab)
be configured to use various network services such as DHCP and DNS, so the network and
the servers need to be available first. Therefore, start the routers first then the hosts when
the routers have finished booting.

When the routers boot they might complain about the floppy disks, because we have
essentially given them a floppy disk each with no filesystem on it, and it’s expecting to find
a filesystem with configuration data on it. This is unlikely to be a problem for you initially,
but you may still run into it if you reboot the router later. The initial login and password for
all routers are vyatta

Once you have them all running you may like to arrange them on your desktop into roughly
the same shape as the topology; you may find that doing this helps you to trace how traffic
moves through your network.

3Which can be preferable because it means it doesn’t need to capture the mouse.

12

Internal Routing

4. Configure System Basics
The first thing to do in each Vyatta router is to format (initialise) the (virtual) floppy disk, so
we have somewhere to permanently save our configuration when we run save. Otherwise, we
lose our configuration when we reboot. Initialise the floppy using init-floppy. When you do,
you will notice that it says that it is writing the configuration file to /media/floppy/config/
config.boot (later, when saving, it might say /opt/vyatta/…, which doesn’t seem much like
a floppy disk, but its the same location). If you look at the floppy-disk icon at the bottom of
the Virtualbox VM window, you will notice it flashing orange as it gets written to.

In configuration mode (configure), set the system host-name to the name of the router:
R1, R2 or R3. Type commit to apply the new configuration (you will not see any changes
until you log out) and then use save to make the change permanent.

Secure the router’s authentication by adding a user for yourself with a password.

edit system login user theauthor
set full-name "The Author"
set level admin
set authentication plaintext-password new_password
show authentication
note that the password appears in the clear
commit
show authentication
note that the password has now been hashed
top

commit, save, exit from configuration mode, and logout of Vyatta. Login as the user you
just created.

It’s always nice to have your logs close to hand, and we can ask Vyatta to put a copy of
important logs onto our console:

set system syslog console facility all level warning
commit

13

Internal Routing

logger -p warning HELLO WORLD

Note that the last line is not a Vyatta command at all, but a standard command that you could
type into a shell; the Vyatta shell implements what Vyatta calls “Fusion”: commands that are
not recognised as Vyatta commands are run as shell commands. Vyatta’s shell is a modified
version of the Bash shell.

Repeat these basic configurations on R2 and R3.

Silence irritating but innocuous error messages
You may often see such an error message "INIT: Id "T0" respawning too
fast: disabled for 5 minutes". You can silence it by commenting out the line
T0:23:respawn:/sbin/getty -L ttyS0 9600 vt100 with a "#" at the front of
the line. Then run sudo init q to make the change effective.

5. Static Routing
Routers R1-3 will (in the next section) participate in dynamic routing using RIPv2 (Routing
Information Protocol version 2). Clients C1 and C2 do not participate in RIPv2; instead they
have a default route set to their respective router. The clients run Ubuntu Linux. Figure 4,
“Interior Routing Network Topology” shows the addressing (the entire network is numbered
out of the 192.168.x.x range of private addresses) and the interface device (“eth0” etc.) on
each link.

Each switch here is labelled with a name, which is not particularly used for Ethernet at all,
but is used more for management purposes. In particular, VirtualBox will create and manage
the switches as needed.

This laboratory uses Virtual LANs (VLANs) in the middle part of the network. An interface
such as eth0.10 means VLAN 10 on the eth0 interface, and is presented as a separate
interface, which can have its own address, etc. When configuring interfaces inside the Vyatta
shell, you would refer to this particular virtual interface as “interface ethernet eth0 vif 10”.
The VLAN is created automatically, no special commands are required.4

Complete the following tasks:

• Consult the relevant parts of the Vyatta Command Reference; you will find them in the
Lab Resources/Vyatta/Documentation folder, which are colour-tagged to make you find
them easily (Hint: search commands like set interfaces and set protocol static). You will
be well advised to make good use of Tab completion. For example, using Tab completion,
you would find a useful command set interfaces ethernet eth0 vif 10 for creating a new
VLAN (with an ID 10).

• Configure the basic system for the routers; hostname, accounts (change the default
passwords) and interface configuration. Do not enable access via SSH or HTTP, although
you are welcome to try it later.

• You will also need to configure the interfaces on the clients C1 and C2. Because any
configuration will perish upon boot, you can just use ifconfig and route to set up the
network interfaces. Refer back to the earlier lab on Basic Interface Management where
these commands were practiced. Note that you will quickly find out you need to install net-

4Which is to say that Vyatta calls the Linux command vconfig for you.

14

Internal Routing

tools with apt-get. So you need to enable the second network adaptor connecting to NAT
in order to have Internet access.

• Configure static routes for all routers. Use the traceroute command to verify reachability
throughout your network. If you are in configuration mode, use run traceroute ip,
otherwise use traceroute ip in operational mode. Note that the Vyatta shell has its own
traceroute command; there is also the system command (/usr/bin/traceroute). The major
difference is that the Vyatta shell command doesn’t take extra arguments, such as -n which
would otherwise be used to prevent lengthy DNS lookups. Thankfully, the Vyatta shell
version of traceroute doesn’t do DNS lookups anyway.

Screenshot
If traceroute is not available try mtr instead. Take a screenshot of your routing table
and testing on all machines. You should verify that you can get from any interface in
the network to any other interface.

• Remove all static routes on R1-3 after you have verified all your work and recorded suitable
evidence; you can remove them easily using the configuration command delete protocols
static and then commiting your configuration. Once you have the static routes removed,
start working on your RIPv2 configuration.

Partial Marks Available
If you only complete up to here (getting Static Routing completed and tested),
then you are eligible for partial marks.

6. TCPDump
Important

Read this section, but do not try to do this until you have completed the RIP
configuration task in the next assessment.

In the following section you will be required to use a network sniffer (traffic capture) utility
called tcpdump, which is a widely known program for seeing what traffic is going through
a network interface.

Note
Although we say “traffic capture” occasionally, we do not prevent the packet
from reaching its destination. In this way, we are capturing a copy of the packet.

Because tcpdump requires root privilege, you will need to reinstate the ability to login
as root. You can do this with the configuration command set system login user root
authentication plaintext-password roots_new_password and then using commit. Now if
you logout you will be able to login as root. Root gets a slightly different shell to standard
Vyatta users which allows you to use standard system commands, such as ls or tcpdump.

• tcpdump is a very well known network sniffer in the Unix world. It is a command-line tool
that takes a Packet CAPture (PCAP) expression and watches all the packets coming into,
or going out of, an interface on the machine. For those packets that match the expression,
a brief description of the packet header is printed.

15

Internal Routing

• Have a look at the manual page for tcpdump(8), where you will find a rich number of
examples near the bottom.

RIP traffic uses the “router” port (UDP port 520), and if you tell tcpdump to output in
verbose mode, it will decode the RIP advertisements. You will want to grab (“snarf”) all the
packet (-s0), otherwise you will only get a small part of the body of the packet, and not all
of the advertisement will be printed.

tcpdump -i ethXXX -v -s0 udp and port 520

Typically, an Ethernet interface will only pass up to the operating system those ethernet
frames that are either addressed to its own MAC address, or are a broadcast or multicast
frame.

To enable functionality for traffic sniffing or packet forwarding (ie. acting as a router)
the interface needs to pick up all frames. Accepting all packets in this way is called the
promiscuous mode. Enabling promiscous mode is done automatically by tcpdump and similar
tools on most platforms.

All these tools can commonly understand the PCAP (Packet CAPture) format, so you can use
tcpdump to capture packets from a remote machine to a file (the -w option), copy it to your
local machine, and then analyse it further using tools such as Wireshark.

7. RIP Assessment
Using RIP is actually very simple. Most of the time will likely be spent waiting for the routing
tables to converge to a stable solution.

Important
Don’t forget that you need to remove any static routes from the routers R1-3
before you start on this section.

1. Configure the routers for use with RIP. You must refer to the Vyatta documentation to
find out how to do this. Hint: search commands like set protocols rip and make sure
redistribution of RIP information is enabled.

Tip
You will find you have a choice between advertising a “network” or an
“interface” when setting the RIP protocol. In this case, advertising the
“interface” is preferable, because it means that it will use the address assigned
to a particular interface. This could reduce typing mistakes, but could also
make it harder to check if you have many interfaces, as Vyatta doesn’t allow
for easily renaming interfaces. If you set up RIP correctly, everything should
work by default. Show the routing table of each router with show ip route or
run show ip route in the configuration mode and test the routing functions
with ping in the clients.

2. Observe RIP traffic using tcpdump. Listen on R3’s eth0.20 or eth0.30 interface. You will
notice that some routes are missing in the advertisements. Explain why this happens.
Hint: check RIP optimisations like split horizon in the lecture notes.

16

Internal Routing

3. Go back into configuration mode, and enable poison-reverse using the configuration
command set interfaces ethernet ethX vif Y ip rip split-horizon poison-reverse
for each interface on each router.

Using tcpdump as before, what has changed? Hint: you will see some routes have
a hop-count of 16, which means "unreachable". check RIP optimisations like poison
reverse in the lecture notes.

4. Rather than using the system command tcpdump, as was done in the previous
questions, we can get a lot more debugging information from Vyatta itself. Investigate
which debugging commands might be useful for showing what advertisements are
being received. Hint: debug rip packet and show log tail.

Note that show log tail is a particularly important command for actually seeing the
logs, but it is unfortunately not at all obvious when reading the documentation for the
debug commands related to RIP and others.

Be aware that in order to stop debugging output being produced, you will want to use
no debug … instead of debug …. The arguments need to be the same. You can use
show debugging rip to see what debugging options are enabled.

5. In VirtualBox, we can connect and disconnect adaptors from a machine reasonably
easily. In the bottom part of a VirtualBox VM window, you can click on the network
icon to unplug or plug an interface. This is the same as plugging or unplugging a cable.
We’re going to use this feature to disconnect the 192.168.4.0/24 network from R1, and
see how long it takes for R2 to learn of the outage, by following the instructions below.

To see changes of R2's routing table, we shall use the system command ip monitor
(look back to the early lab where tools such as ifconfig were introduced). In modern
versions of Vyatta that feature the FusionCLI interface, we can enter shell commands
as well as Vyatta commands; the Tab completion shows only the Vyatta commands, but
never shell commands, as you might have noticed.

1. In operator mode (ie. not configuration mode) run show log tail on R1; we should
see a notification here when we unplug the interface.

2. On R2, run ip -timestamp monitor. This will start reporting for changes to the
routing table.

3. On R1, un-tick the Adaptor 1 interface so it becomes unplugged, a log will be printed
on-screen.

4. On R2, there will shortly be a message reporting the change. Note the time it took;
the clocks will be synchronised, so use the timestamps from both machines.

5. That was fail-over. Re-enable the interface on R1. Measure how long it takes to fail-
back.

What were the fail-over and fail-back times? What improvement to basic RIP is being
used here?

The fail-over and fail-back times should be very quick, basically, about a second. This
shows R1 is sending a triggered update about the change, rather than waiting for its
next time period of advertisement.

17

Internal Routing

6. The previous exercise simulated a situation whereby the isolation occured on the far
side of a router, and the router could therefore tell us about it. Let’s now simulate a fault
on the near side of the router where the router R1 is cut-off from the routers R2 and R3.

Consider the physical topology diagram shown earlier. If you disconnect Apaptor 2 (ie.
eth1) on R1, both the 192.168.1.0/24 and 192.168.2.0/24 network links on R1 would be
useless (which are built from VLANs that go over the same cable). Therefore, if Adaptor
2 goes down, it completely separates the network.

Now take down Adaptor 2 on R1, and measure how long it takes for R2 to respond by
removing routes for those prefixes which are no-longer reachable. For example, how
long does this take? what prefixes are removed from R2’s routing table?

Put the interface back, how long does fail-back take?

7. In the previous exercise, it took R2 a while to realise that it hadn’t received a message
from R1 for a while and to place it in the “hold-down” state, which allows it to ignore
updates about this route for a while in order to let any old routing information expire
from the network. In this scenario, we are going to simulate a routing problem whereby
this time the routers can route around the problem.

On R2, quit out of ip monitor using Control-C and use the operational command show
ip route to observe the current state of the routing table (our “steady-state”). Then
start ip -timestamp monitor to watch for R2’s reaction to the change we are about
to make.

Simulate the network failure by withdrawing RIP on the eth1.10 interface of the router
R1. You can do this using the command delete protocols rip interface eth1.10 and
then committing your change. Use the command date immediatly after to determine
when you made the change. Remember that the clocks on R1 and R2 are running on
the same host, and are implicitly synchronised.

When you see R2’s reaction, quit the monitor and observe the routing table again.
How has it changed (look closely to which next-hop is being used for each network)?
Ensure you can describe the meaning of any changes. Was an alternative route used
immediately by R2, or was there some time gap between the deletion of the failover
route and the setup of the alternative route? How long was the gap? Why? Hint: check
RIP optimisations like hold down timer in the lecture notes.

Start the monitor again and allow R1 to participate in RIP on eth1.10 again. Don’t forget
to commit the change and run date. How long does it take for R2 to fail back to the
optimal path?

8. [Optional] Connecting to the Outside
World
When you are done, and looking for something else to spark your interest, you might try these
optional activities.

In this optional section, you’re going to add another adaptor to R1, connected via Virtualbox
NAT, and advertise this as a default route to the rest of the network.

Add an extra adaptor to one of the routers with a VirtualBox NAT type interface and originate
a default route using RIP. The interface will have to be configured via DHCP (as a client). You

18

Internal Routing

should now be able to access the network beyond the host using TCP services such as SSH;
note that ping won’t work, as the VirtualBox NAT adaptor can’t support ICMP.

Note that it is not our router that is performing the NAT, but rather some VirtualBox device
just beyond. We shall be investigating doing NAT ourselves in the next lab.

Because we’re going to need VirtualBox’s NAT system to know more about our network (in
order to figure out where to route traffic coming back into the network), we’re going to
require something a little more complex with regard to how we configure VirtualBox to do the
NAT. To do some of this, we have to use the command-line management tool VBoxManage
instead of the GUI.

Make sure you have saved your configuration on R1, and shutdown the system gracefully.
Then, on a terminal window on your Mac workstation, run the following commands:

Add Adaptor 3 (eth2), which is a NAT adaptor
$ VBoxManage -q modifyvm IntRoute_R1 \
> --nic3 nat \ Make Adaptor 3 connected via VirtualBox NAT
> --nictype3 virtio \ Setting adaptor type [performance]
> --natnet3 "192.168/16" \ Use 192.168.x.x instead of 10.0.x.x
> --natdnsproxy3 on \ Advertise DNS server at 192.168.0.3
> --natdnspassdomain3 off Don’t advertise DNS search path of host

Now start R1, and configure the new interface:

$ configure
$ set interfaces ethernet eth2 address dhcp
$ commit
$ run show dhcp client leases
interface : eth2
ip address : 192.168.0.15 [Active]
subnet mask: 255.255.0.0
router : 192.168.0.2
name server: 192.168.0.3
dhcp server: 192.168.0.2
…

Note that the subnet our interface is placed in is 192.168.0.0/16, which is good for us because
it means all of our addresses in our network fall under that. In essence, we have hierarchical
addressing. As far as our gateway to the outside world (VirtualBox NAT) is concerned,
anything addressed to something in 192.168.x.x will be sent onto the local network which
R1’s eth2 interface will be attached to.

This means that traffic coming from the outside that ought to be routed via R1 as the next-
hop, will not. Take for example traffic returning to C2 (192.168.5.10). VirtualBox will think
that it should be a local delivery, so will ARP for C2’s hardware address. We work-around this
problem (solving the problem properly involves being able to add a route entry to VirtualBox’s
NAT engine) by enabling Proxy-ARP on R1’s eth2 interface: set interfaces ethernet eth2
ip enable-proxy-arp.

The VirtualBox manual states that, given the configuration used above, the only addresses
that are used are 192.168.0.15 for the guest, 192.168.0.2 for the router and 192.168.0.3 for
the DNS name server. Thus, we can set aside 192.168.0.0/24 in our addressing plan as being
used for the network between R1 and the VirtualBox NAT, which conveniently leaves the rest
of our network unchanged.

After you’ve added and tested the interface, test connectivity. Remember though, that we
cannot use ping to test because the VirtualBox NAT doesn’t support ICMP. R1 was configured

19

Internal Routing

with DNS settings via DHCP, so we should be able to resolve hostnames. We can also try
using test-by-doing.

$ host vertex.otago.ac.nz
… (or anything else). Should work fine.
$ ssh user@vertex.otago.ac.nz
… (or to anywhere else). Should work fine.

On all other hosts and routers you will want to set the DNS nameserver to 192.168.0.3. On
Vyatta, this can be done using set system name-server 192.168.0.3. On Linux guests, just
put nameserver 192.168.0.3 into /etc/resolv.conf.

Now all you need to do is advertise the default route via RIP. Because default routes catch
a lot of traffic, and can be problematic with regard to routing loops, there are protection
measures in place to ensure they are not accidentally advertised.

On Vyatta, we tell Vyatta that we want to originate default route information using the
configuration command set protocols rip default-information originate (this is the sanity
check), and advertise the default route using set protocols rip network 0.0.0.0/0. There
are no special configuration elements you need to put into the receiving routers, just use
the operational command show ip route to verify that the other routers now have a default
route, learned via RIP.

9. [Optional] Configure RIPv2
Authentication
In this optional section you’re going to authenticate your dynamic routing advertisements
using RIPv2 MD5 authentication. This will help prevent attackers from subverting your
routing infrastructure by easily advertising bogus information, which could be make it easy
to launch attacks such as man-in-the-middle (MitM) and denial-of-service (DoS).

The original version of RIP didn’t support authentication (or variable-length subnet masks,
known as VLSM, which we also think of as class-less addressing), and so should never be used.

RIPv2 supports at least two forms of authentication. The first is a plain-text password, so
is only useful for protecting against accidental misconfiguration, not deliberate attacks. You
should instead use the MD5 form of authentication. To allow keys to be changed, a number of
different passwords can be entered simultaneously, identified by an index. We’re just going
to use a single password, so our index will be 1 (the lowest index allowable).

RIPv2 Authentication is enabled on a per-interface basis, so on R1 we shall need to enable
authentication on two interfaces: eth1.10 and eth1.20, as those are the interface which are
connected to other RIP routers. The configuration command is set interfaces ethernet eth1
vif 10 ip rip authentication md5 1 password OurSharedSecret. The shared secret has
to be the same on each link, but does not need to be the same throughout the RIP routing
domain. When you have made the configuration change to all the routers, ensure that it is all
working. Use run show ip rip status to inspect the status of the RIP agents. Refer to the
Vyatta RIP Reference for further commands.

10. [Optional] IPv6 and RIPng
Don’t worry if you don’t have much time to do this. The parts regarding subnetting and
addressing will be covered as a class-exercise in the lab on Subnetting. Students wanting

20

Internal Routing

to do this section should not find it difficult, but will benefit greatly from watching the 20-
minute video on IPv6 Subnetting in the Lab Resources.

RIP (either version 1 or 2) doesn’t have support for IPv6. Instead, we have RIPng (RIP Next
Generation)5, which is an extension of RIPv2, although some features, such as authentication,
are not supported in RIPng6.

10.1. Design the Subnetting and Addresses
Let’s begin by doing a little bit of addressing. This is starting to get into the up-and-coming
subnetting lab, but this is rather easy (easier than IPv4 with public IP addresses).

If we want to subnet our network, we first need a network allocation. We’ll create one using
Unique-local addresses, and then subnet that. A Unique-local address can easily be generated
using random numbers, but we can generate fewer clashes by basing it on something that
is already reasonably globally unique, such as an Ethernet MAC address. Point your web
browser to Generate Unique Local Address [http://www.kame.net/~suz/gen-ula.html] and put
in the MAC address of any of your interfaces, such as any one of the interfaces on R1.

Write down the network allocation that has been generated; this is what we shall be
subnetting. For this example, I’m using fd49:59ab:879f::/48; you should use the one you
generated.

The allocation that you generate will contain 48 bits for the network ID. We typically want
subnets no smaller than a /64, so we have 16 bits to use for subnetting. If we were to only
allocate subnets of size /64, then we have up to 216 subnets, and a routing entry for each!

If, however, we wanted to provide some more hierarchy in our addressing plan, and allow
some of these divisions to be further subnetted, then we should use some intermediate size.
For example, if we allocate subnets of size “/56”, then that means we’ve used 56-48=8 bits
for our subnet IDs. This means we can have 28=256 subnets of size “/56”.

IPv4 conditioned us to like subnetting on 8-bit boundaries. This is because IPv4 addresses
are dotted decimal, and each decimal was 8-bit integer (0—255). IPv6, on the other hand,
uses hexadecimal notation, so we can naturally work easily with 4-bit boundaries.

In the example above, if 216=65,536 subnets is too many, and 28=256 is worryingly few,
we could compromise and use subnets of size “/60”, which would give us 260-48=212=4096
subnets, and each subnet could have 4 bits of subnet ID remaining which could be used for
further subnetting. This is good, because dealing with subnets smaller than a /64 is not good
for hosts, as you can’t use SLAAC in that case.

Since this is our first network, let’s just assume for now that we want each subnet in our
network to be a /56. Bear in mind, though, that we could have a mixture of different subnet
sizes if we needed, but we can keep things simple for now.

So, looking at the network map, give each of the five subnets a number; because we’ve already
got a nicely organised IPv4 network running in parallel, we shall save some confusion and use
the same subnet IDs. Allocate a /56 to each subnet in your network. You might end up with
something like the following. This is also shown on the map in Figure 9, “IPv6 Subnetting
and Addressing”.
5During early development, IPv6 was refered to as IPng, for Next Generation.
6Such functionality is supposed to be supplied by IPSec support in IPv6.

21

http://www.kame.net/~suz/gen-ula.html
http://www.kame.net/~suz/gen-ula.html

Internal Routing

Network allocation: fd49:59ab:879f::/48
 subnet 1: …:01│00::/56
 subnet 2: …:02│00::/56
 subnet 3: …:03│00::/56
 subnet 4: …:04│00::/56
 subnet 5: …:05│00::/56
 ↑ /56 boundary

Figure 9. IPv6 Subnetting and Addressing

The subnetting and addressing plan for our network.

Note that we have shown the network identifier as ommitted in the various subnets, to try
and aid your understanding of how the addressing scheme is structured. The full prefix of
subnet 3, for example, is fd49:59ab:879f:0300::/56.

Please also note that we have shown the subnet ID as 0300, and NOT as 03, because then you
might be tempted to write fd49:59ab:879f:03::/56, which is NOT THE SAME, as the latter is
actually fd49:59ab:879f:0003::/56. Only the first two digits (8 bits) of 0300, for example, are
being used here as the subnet ID, the remaining bits up to the 64th bit would typically be
zero and available for further subnetting.

But we’re not quite done yet. We want to use SLAAC to advertise a prefix onto our ethernet
segments. According to RFC 2464 — “Transmission of IPv6 Packets over Ethernet Networks”
— the prefix length must be exactly 64 bits. So in our case we’ve given ourselves a prefix
of /56, but we only offer a smaller /64 out of that. What happens with the left-over bits?
They remain available for further subnetting, should we desire to subnet one of the networks
further. Figure 10, “IPv6 Subnetting Allowing for Growth” shows one possible way in which
the network might grow. Note that by reserving some bits for subnetting, we allow for more
hierarchical addressing which leads to more efficient routing: the number of routes that the
other routers need to know about remain the same bacause they can easily be summarised.

22

Internal Routing

Figure 10. IPv6 Subnetting Allowing for Growth

The subnetting of our IPv6 network, showing why
it is useful to reserve some bits for subnetting.

Routers don’t use address autoconfiguration, so each will need a static address. We’ll be
simple and just use a host ID of 1, 2 and 3 for routers R1, R2 and R3. There is no requirement to
do it quite like this, it’s just to make addresses easier to recognise. Figure 9, “IPv6 Subnetting
and Addressing” shows the addressing structure of our network, as we have discussed it.
Write down the address for each interface on R1, R2 and R3. Note that clients C1 and C2
still use address autoconfiguration.

R1 eth0 fd49:59ab:879f:0400::1
R1 eth1.10 fd49:59ab:879f:0100::1
R1 eth1.20 fd49:59ab:879f:0200::1
R2 eth0 fd49:59ab:879f:0500::2
R2 eth1.10 fd49:59ab:879f:0100::2
R2 eth1.30 fd49:59ab:879f:0300::2
R3 eth0.20 fd49:59ab:879f:0200::3
R3 eth0.30 fd49:59ab:879f:0300::3

10.2. Configure Interfaces
Now that we have designed the addressing and have assigned addresses for each interface,
let’s now affect those assignments. You should consult the Vyatta IPv6 documentation for the
full details. Here is an example of configuring just the eth1 VLAN 10 interface on R1:

configure
set interfaces ethernet eth1 vif 10 address fd49:59ab:879f:0100::1/56
commit

23

Internal Routing

run show interfaces

Use ping6 address (if you’re still in configuration mode, use run ping6 address) and test
that you can contact all of your neighbours.

Use show ipv6 route to view the IPv6 routing tables.

You’ll also want to enable router advertisements on at least R1’s eth0 interface, and similarly
on R2:

set interfaces ethernet eth0 ipv6 router-advert prefix fd49:59ab:879f:0400::/64
commit

Use ifconfig or similar on the clients to ensure they have an address.

10.3. Configuring RIPng
Configuring RIPng is much like the IPv4 equivalent in Vyatta. The first thing to do is ensure
that IPv6 forwarding is turned on, or perhaps it would be better to ensure it hasn’t been
disabled:

delete system ipv6 disable-forwarding Not needed now, was in earlier versions of Vyatta
commit

Enable RIPng on the interfaces that need to participate in RIPng. In our case, this is at least
those interfaces towards the inside of our network. Using R1 as an example:

set protocols ripng interface eth1.10
set protocols ripng interface eth1.20
commit

Advertise (redistribute) connected networks:

set protocols ripng redistribute connected
commit

Verify that it is working:

run show ipv6 ripng status
run show ipv6 route

Repeat the above on all other routers, then test reachability using ping6 and/or traceroute6.

24

